Normalized defining polynomial
\( x^{16} + 36 x^{14} - 2218 x^{12} - 56357 x^{10} + 1985485 x^{8} + 64738207 x^{6} + 610268042 x^{4} + 2074962124 x^{2} + 1335975601 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49943352689409528470220947265625=5^{14}\cdot 67^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{56245981334242573657371058019602} a^{14} + \frac{1668059177040127509235332696161}{28122990667121286828685529009801} a^{12} + \frac{1704113378525521178876786759947}{28122990667121286828685529009801} a^{10} - \frac{252778188258550899801323799172}{28122990667121286828685529009801} a^{8} + \frac{11184758683662893557635211905316}{28122990667121286828685529009801} a^{6} - \frac{1}{2} a^{5} + \frac{1185879587250543793250905537158}{28122990667121286828685529009801} a^{4} - \frac{16633891095206754280177858096101}{56245981334242573657371058019602} a^{2} - \frac{1}{2} a - \frac{25046516296703081130414193608475}{56245981334242573657371058019602}$, $\frac{1}{2055846863747900309750569541674472702} a^{15} + \frac{215901867410667159111328041540938438}{1027923431873950154875284770837236351} a^{13} + \frac{25396764685789047527481909482610250}{1027923431873950154875284770837236351} a^{11} + \frac{142498688153927043259149972845063323}{2055846863747900309750569541674472702} a^{9} - \frac{6288365150751505356067923286290108}{1027923431873950154875284770837236351} a^{7} - \frac{473448176121812362673334379068925519}{2055846863747900309750569541674472702} a^{5} - \frac{1}{2} a^{4} - \frac{253179795876521030786107310004324703}{2055846863747900309750569541674472702} a^{3} - \frac{1}{2} a^{2} + \frac{326621951845131834331202869587529477}{1027923431873950154875284770837236351} a$
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4764231301504977617388626}{2384973159800348387181635199158321} a^{15} - \frac{21430851107015}{5640279078827371107842} a^{14} + \frac{241256927173153840363945783}{4769946319600696774363270398316642} a^{13} - \frac{473871850504487}{5640279078827371107842} a^{12} - \frac{11811305339064742839002135425}{2384973159800348387181635199158321} a^{11} + \frac{27457892144040270}{2820139539413685553921} a^{10} - \frac{281521304325604374123693720891}{4769946319600696774363270398316642} a^{9} + \frac{462577907338336177}{5640279078827371107842} a^{8} + \frac{10854453407838671021877862459956}{2384973159800348387181635199158321} a^{7} - \frac{25500745113749642977}{2820139539413685553921} a^{6} + \frac{379599819509318810174280666412687}{4769946319600696774363270398316642} a^{5} - \frac{695109894795923430307}{5640279078827371107842} a^{4} + \frac{1967181731693041592090019222339717}{4769946319600696774363270398316642} a^{3} - \frac{816986963759335118115}{2820139539413685553921} a^{2} + \frac{2231002237950198337451422445716216}{2384973159800348387181635199158321} a + \frac{1828656112075454365025}{2820139539413685553921} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 371298502.259 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-67}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-335}) \), \(\Q(\sqrt{5}, \sqrt{-67})\), 4.4.561125.1, \(\Q(\zeta_{5})\), 8.0.314861265625.1, 8.4.7067061106953125.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 67 | Data not computed | ||||||