Normalized defining polynomial
\( x^{16} - 2 x^{15} + 25 x^{14} + 44 x^{13} + 218 x^{12} + 904 x^{11} + 2685 x^{10} + 9348 x^{9} + 27113 x^{8} + 60204 x^{7} + 127675 x^{6} + 214177 x^{5} + 296303 x^{4} + 373741 x^{3} + 351229 x^{2} + 201961 x + 59321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49642480033862407473413572361=37^{15}\cdot 53^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{12} - \frac{1}{7} a^{11} + \frac{2}{7} a^{10} + \frac{3}{7} a^{7} + \frac{1}{7} a^{6} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7}$, $\frac{1}{16751029326646441929092464229079676639} a^{15} + \frac{622989922479999586282419478315538814}{16751029326646441929092464229079676639} a^{14} - \frac{3633715137749713227675969686213183310}{16751029326646441929092464229079676639} a^{13} + \frac{5751798744609486420005447090181834293}{16751029326646441929092464229079676639} a^{12} + \frac{5447621353255467601542097774578468435}{16751029326646441929092464229079676639} a^{11} - \frac{5386390193868116047780427199212077574}{16751029326646441929092464229079676639} a^{10} + \frac{916920413125000628479859332494287550}{2393004189520920275584637747011382377} a^{9} + \frac{2194817537974548335680442670944743596}{16751029326646441929092464229079676639} a^{8} - \frac{2364558990665791684425392611760998322}{16751029326646441929092464229079676639} a^{7} - \frac{7395437470478299811934113730508449392}{16751029326646441929092464229079676639} a^{6} + \frac{71732076799127248619635248415579795}{2393004189520920275584637747011382377} a^{5} - \frac{7089384809918558614305177773255915431}{16751029326646441929092464229079676639} a^{4} - \frac{4415989971124113440656217207672067160}{16751029326646441929092464229079676639} a^{3} - \frac{1539388564335945728392695871882712514}{16751029326646441929092464229079676639} a^{2} + \frac{3114296993675055059482639689535438961}{16751029326646441929092464229079676639} a - \frac{3187515344758739994248444576432633230}{16751029326646441929092464229079676639}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12133117.6808 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 8.0.5031389488049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 53 | Data not computed | ||||||