Normalized defining polynomial
\( x^{16} + 1500 x^{14} + 889640 x^{12} + 264096308 x^{10} + 40486683676 x^{8} + 2897987746232 x^{6} + 67780112968120 x^{4} + 460191898925712 x^{2} + 781198698804624 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49504953235652560005667952183459368974585759268864=2^{36}\cdot 7687^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1276.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7687$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{6} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{6} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{12} a^{10} - \frac{1}{6} a^{6} - \frac{1}{6} a^{4}$, $\frac{1}{12} a^{11} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{12} + \frac{1}{6} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{24} a^{13} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{26455412456752174841613553944746946833675229480} a^{14} - \frac{10578413166309780435824318371310000063691217}{4409235409458695806935592324124491138945871580} a^{12} - \frac{122143256149403395537430349808212998256396473}{13227706228376087420806776972373473416837614740} a^{10} + \frac{52004142197574795327269778785898092259045923}{2645541245675217484161355394474694683367522948} a^{8} - \frac{475366981097819787917765845285941622725597041}{6613853114188043710403388486186736708418807370} a^{6} + \frac{30296729469840568057752406343864983816873}{172078915420529301688653271398119857120302} a^{4} + \frac{25676371688750581032521379615543796174657}{86039457710264650844326635699059928560151} a^{2} + \frac{4470486311106047947778004320376762515928}{47799698727924806024625908721699960311195}$, $\frac{1}{8015989974395908977008906845258324890603594532440} a^{15} + \frac{32680672460486041007233994433847355947054498451}{2671996658131969659002968948419441630201198177480} a^{13} + \frac{125541065913423427102126950887739784461700943557}{4007994987197954488504453422629162445301797266220} a^{11} - \frac{30371720183067426272528317257673090766467467979}{801598997439590897700890684525832489060359453244} a^{9} - \frac{123933958445941302382114350920771693513210001281}{2003997493598977244252226711314581222650898633110} a^{7} - \frac{1575773147788432914369678126705253682639279}{52139911372420378411661941233630316707451506} a^{5} - \frac{3444581755958590336355319593579873322418100}{26069955686210189205830970616815158353725753} a^{3} + \frac{2009077508676543869016880834418190587242166}{4827769571520405408487216780891695991430695} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{161966728}$, which has order $20731741184$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 381035207.312 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 40 conjugacy class representatives for t16n1543 |
| Character table for t16n1543 is not computed |
Intermediate fields
| 4.4.59089969.4, 8.8.893855855723766016.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.9.6 | $x^{4} - 2 x^{2} - 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.12.27.126 | $x^{12} - 8 x^{8} - 4 x^{6} - 12 x^{4} + 8 x^{2} - 8$ | $4$ | $3$ | $27$ | 12T51 | $[2, 2, 2, 3, 7/2]^{3}$ | |
| 7687 | Data not computed | ||||||