Normalized defining polynomial
\( x^{16} + 1928 x^{14} + 1288880 x^{12} + 405962108 x^{10} + 65834061236 x^{8} + 5383868719400 x^{6} + 189111188166776 x^{4} + 1503056414236448 x^{2} + 15977927617600 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49504953235652560005667952183459368974585759268864=2^{36}\cdot 7687^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1276.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7687$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8396247837689679575469313007771592732000984231190704} a^{14} - \frac{23430189690644529857517547598937786638792265170099}{2099061959422419893867328251942898183000246057797676} a^{12} + \frac{53375148720844148022210451357569962174342497912282}{524765489855604973466832062985724545750061514449419} a^{10} + \frac{85791721118235108456559253564628916304865278061079}{2099061959422419893867328251942898183000246057797676} a^{8} + \frac{189392593284664263849284223280994572156802012012563}{2099061959422419893867328251942898183000246057797676} a^{6} - \frac{13026297985038837512163630545388984791451617915}{68266617647405356246498251982011779075069795037} a^{4} + \frac{3240307644828688519409755839686806847575811017}{12412112299528246590272409451274868922739962734} a^{2} - \frac{25024979073548861158435289553954800505487724504}{68266617647405356246498251982011779075069795037}$, $\frac{1}{1091512218899658344811010691010307055160127950054791520} a^{15} - \frac{13667332925936373839995151185227775976140391640854993}{272878054724914586202752672752576763790031987513697880} a^{13} + \frac{745346715542015792458006978451528356484954619811643}{13643902736245729310137633637628838189501599375684894} a^{11} - \frac{9359987096282654413946417880178412907196241982028463}{272878054724914586202752672752576763790031987513697880} a^{9} - \frac{13454510142961065046288349414347843617344797363672331}{272878054724914586202752672752576763790031987513697880} a^{7} - \frac{756143313315474453716346224020285163742348392573}{3549864117665078524817909103064612511903629341924} a^{5} + \frac{760379157916051730526026732367453811134713537791}{1613574598938672056735413228665732959956195155420} a^{3} + \frac{2172019275180196969308726418647399530149489578932}{4437330147081348156022386378830765639879536677405} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{104987608}$, which has order $13438413824$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 381035207.312 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 40 conjugacy class representatives for t16n1543 |
| Character table for t16n1543 is not computed |
Intermediate fields
| 4.4.59089969.4, 8.8.893855855723766016.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.9.6 | $x^{4} - 2 x^{2} - 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.12.27.126 | $x^{12} - 8 x^{8} - 4 x^{6} - 12 x^{4} + 8 x^{2} - 8$ | $4$ | $3$ | $27$ | 12T51 | $[2, 2, 2, 3, 7/2]^{3}$ | |
| 7687 | Data not computed | ||||||