Normalized defining polynomial
\( x^{16} - 5 x^{15} + 20 x^{14} - 75 x^{13} + 156 x^{12} - 325 x^{11} + 548 x^{10} - 279 x^{9} + 554 x^{8} + 51 x^{7} - 1277 x^{6} - 2053 x^{5} - 1505 x^{4} + 1586 x^{3} + 4632 x^{2} + 3971 x + 2749 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(494965078673757801201=3^{8}\cdot 16573^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 16573$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{154112218762813875088205251} a^{15} - \frac{56685692438190127494016900}{154112218762813875088205251} a^{14} - \frac{70936488392963073237204836}{154112218762813875088205251} a^{13} + \frac{22949210674136677808609907}{154112218762813875088205251} a^{12} + \frac{26090359383115270573317477}{154112218762813875088205251} a^{11} - \frac{69377420631373626738236117}{154112218762813875088205251} a^{10} + \frac{40024808740709177815334223}{154112218762813875088205251} a^{9} - \frac{64295704288118369067919947}{154112218762813875088205251} a^{8} - \frac{23851533711644860583407248}{154112218762813875088205251} a^{7} + \frac{2663683782309710719860814}{154112218762813875088205251} a^{6} + \frac{71779534984817229732035346}{154112218762813875088205251} a^{5} + \frac{10204621449063271451372708}{154112218762813875088205251} a^{4} - \frac{18529240998202866166270600}{154112218762813875088205251} a^{3} - \frac{43997858430307000819095362}{154112218762813875088205251} a^{2} - \frac{1000316680161390058031390}{4165195101697672299681223} a + \frac{66923564218954135168939670}{154112218762813875088205251}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{122930989654}{443433910836079} a^{15} + \frac{333657084389}{443433910836079} a^{14} - \frac{899889892129}{443433910836079} a^{13} + \frac{3642647496784}{443433910836079} a^{12} - \frac{24554869838}{443433910836079} a^{11} + \frac{372094970759}{443433910836079} a^{10} - \frac{3638843866552}{443433910836079} a^{9} - \frac{69169346021228}{443433910836079} a^{8} + \frac{4450999869338}{443433910836079} a^{7} - \frac{74407615218177}{443433910836079} a^{6} + \frac{317938339814038}{443433910836079} a^{5} + \frac{178085477828676}{443433910836079} a^{4} + \frac{186343532366066}{443433910836079} a^{3} - \frac{278410530133433}{443433910836079} a^{2} - \frac{17633896818624}{11984700292867} a - \frac{149802315217443}{443433910836079} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12143.537393 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 73728 |
| The 77 conjugacy class representatives for t16n1869 are not computed |
| Character table for t16n1869 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 8.0.1342413.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 16573 | Data not computed | ||||||