Normalized defining polynomial
\( x^{16} - 5 x^{15} + 14 x^{14} - 29 x^{13} + 50 x^{12} - 77 x^{11} + 112 x^{10} - 149 x^{9} + 176 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(4919707275390625\)
\(\medspace = 5^{12}\cdot 67^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.57\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}67^{1/2}\approx 27.369376545007917$ | ||
Ramified primes: |
\(5\), \(67\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19}a^{15}-\frac{1}{19}a^{14}-\frac{9}{19}a^{13}-\frac{8}{19}a^{12}-\frac{1}{19}a^{11}-\frac{5}{19}a^{10}-\frac{3}{19}a^{9}-\frac{9}{19}a^{8}+\frac{7}{19}a^{7}-\frac{2}{19}a^{6}-\frac{1}{19}a^{5}-\frac{8}{19}a^{4}+\frac{3}{19}a^{3}-\frac{5}{19}a^{2}-\frac{5}{19}a-\frac{5}{19}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{217}{19} a^{15} - \frac{1015}{19} a^{14} + \frac{2626}{19} a^{13} - \frac{5042}{19} a^{12} + \frac{8162}{19} a^{11} - \frac{12010}{19} a^{10} + \frac{17057}{19} a^{9} - \frac{21846}{19} a^{8} + \frac{24053}{19} a^{7} - \frac{22588}{19} a^{6} + \frac{17035}{19} a^{5} - \frac{10419}{19} a^{4} + \frac{5040}{19} a^{3} - \frac{1541}{19} a^{2} + \frac{435}{19} a + \frac{36}{19} \)
(order $10$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{195}{19}a^{15}-\frac{974}{19}a^{14}+\frac{2653}{19}a^{13}-\frac{5303}{19}a^{12}+\frac{8830}{19}a^{11}-\frac{13211}{19}a^{10}+\frac{18871}{19}a^{9}-\frac{24650}{19}a^{8}+\frac{28060}{19}a^{7}-\frac{27427}{19}a^{6}+\frac{21959}{19}a^{5}-\frac{14290}{19}a^{4}+\frac{7463}{19}a^{3}-\frac{2742}{19}a^{2}+\frac{792}{19}a-\frac{82}{19}$, $\frac{183}{19}a^{15}-\frac{1000}{19}a^{14}+\frac{2894}{19}a^{13}-\frac{6024}{19}a^{12}+\frac{10305}{19}a^{11}-\frac{15697}{19}a^{10}+\frac{22612}{19}a^{9}-\frac{30128}{19}a^{8}+\frac{35329}{19}a^{7}-\frac{35725}{19}a^{6}+\frac{30160}{19}a^{5}-\frac{20901}{19}a^{4}+\frac{11816}{19}a^{3}-\frac{5038}{19}a^{2}+\frac{1593}{19}a-\frac{326}{19}$, $a$, $\frac{22}{19}a^{15}-\frac{41}{19}a^{14}-\frac{27}{19}a^{13}+\frac{261}{19}a^{12}-\frac{668}{19}a^{11}+\frac{1201}{19}a^{10}-\frac{1814}{19}a^{9}+\frac{2804}{19}a^{8}-\frac{4007}{19}a^{7}+\frac{4839}{19}a^{6}-\frac{4924}{19}a^{5}+\frac{3871}{19}a^{4}-\frac{2423}{19}a^{3}+\frac{1201}{19}a^{2}-\frac{357}{19}a+\frac{118}{19}$, $\frac{99}{19}a^{15}-\frac{422}{19}a^{14}+\frac{1009}{19}a^{13}-\frac{1837}{19}a^{12}+\frac{2884}{19}a^{11}-\frac{4181}{19}a^{10}+\frac{5916}{19}a^{9}-\frac{7332}{19}a^{8}+\frac{7666}{19}a^{7}-\frac{6886}{19}a^{6}+\frac{4803}{19}a^{5}-\frac{2749}{19}a^{4}+\frac{1209}{19}a^{3}-\frac{191}{19}a^{2}+\frac{56}{19}a+\frac{75}{19}$, $\frac{105}{19}a^{15}-\frac{542}{19}a^{14}+\frac{1506}{19}a^{13}-\frac{3025}{19}a^{12}+\frac{5025}{19}a^{11}-\frac{7498}{19}a^{10}+\frac{10686}{19}a^{9}-\frac{13998}{19}a^{8}+\frac{15954}{19}a^{7}-\frac{15467}{19}a^{6}+\frac{12245}{19}a^{5}-\frac{7813}{19}a^{4}+\frac{3906}{19}a^{3}-\frac{1380}{19}a^{2}+\frac{349}{19}a-\frac{31}{19}$, $\frac{46}{19}a^{15}-\frac{65}{19}a^{14}-\frac{167}{19}a^{13}+\frac{829}{19}a^{12}-\frac{1927}{19}a^{11}+\frac{3380}{19}a^{10}-\frac{5116}{19}a^{9}+\frac{7775}{19}a^{8}-\frac{10869}{19}a^{7}+\frac{12847}{19}a^{6}-\frac{12947}{19}a^{5}+\frac{10367}{19}a^{4}-\frac{6645}{19}a^{3}+\frac{3437}{19}a^{2}-\frac{1123}{19}a+\frac{359}{19}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 48.4508350282 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 48.4508350282 \cdot 1}{10\cdot\sqrt{4919707275390625}}\cr\approx \mathstrut & 0.167791741570 \end{aligned}\]
Galois group
$C_4\times S_4$ (as 16T181):
A solvable group of order 96 |
The 20 conjugacy class representatives for $C_4\times S_4$ |
Character table for $C_4\times S_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.8375.1, 8.4.70140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 sibling: | data not computed |
Minimal sibling: | 12.0.1574306328125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }{,}\,{\href{/padicField/2.4.0.1}{4} }$ | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.16.12.1 | $x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$ | $4$ | $4$ | $12$ | $C_4^2$ | $[\ ]_{4}^{4}$ |
\(67\)
| 67.4.0.1 | $x^{4} + 8 x^{2} + 54 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
67.4.0.1 | $x^{4} + 8 x^{2} + 54 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
67.8.4.1 | $x^{8} + 284 x^{6} + 108 x^{5} + 28074 x^{4} - 13608 x^{3} + 1141144 x^{2} - 1396332 x + 15837397$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |