Normalized defining polynomial
\( x^{16} - 4 x^{14} - 2 x^{12} - 76 x^{10} + 402 x^{8} - 476 x^{6} + 1438 x^{4} - 980 x^{2} + 2401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(490875290811165073997824=2^{46}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} - \frac{1}{6} a$, $\frac{1}{6} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{4} a^{3} - \frac{5}{12} a^{2} - \frac{1}{12} a + \frac{1}{4}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{8} + \frac{1}{3} a^{6} + \frac{1}{12} a^{4} + \frac{1}{3} a^{2} + \frac{1}{4}$, $\frac{1}{84} a^{13} + \frac{1}{28} a^{11} - \frac{1}{12} a^{10} - \frac{1}{42} a^{9} - \frac{1}{12} a^{8} + \frac{3}{7} a^{7} - \frac{11}{84} a^{5} - \frac{1}{3} a^{4} - \frac{1}{4} a^{3} - \frac{5}{12} a^{2} + \frac{5}{42} a + \frac{1}{4}$, $\frac{1}{3144359400} a^{14} - \frac{66272651}{3144359400} a^{12} + \frac{52196299}{628871880} a^{10} + \frac{96119059}{3144359400} a^{8} - \frac{188446957}{1048119800} a^{6} - \frac{215840077}{449194200} a^{4} + \frac{1232342471}{3144359400} a^{2} - \frac{2564533}{64170600}$, $\frac{1}{22010515800} a^{15} - \frac{66272651}{22010515800} a^{13} - \frac{105021671}{4402103160} a^{11} - \frac{1}{12} a^{10} + \frac{119383003}{7336838600} a^{9} - \frac{1}{12} a^{8} + \frac{9915857129}{22010515800} a^{7} - \frac{215840077}{3144359400} a^{5} - \frac{1}{3} a^{4} - \frac{7938705779}{22010515800} a^{3} - \frac{5}{12} a^{2} - \frac{8016123}{21390200} a + \frac{1}{4}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{123881}{1048119800} a^{14} - \frac{114869}{1048119800} a^{12} + \frac{2485183}{628871880} a^{10} + \frac{43579663}{3144359400} a^{8} - \frac{69667147}{3144359400} a^{6} - \frac{149185489}{449194200} a^{4} + \frac{71819049}{1048119800} a^{2} + \frac{7596319}{64170600} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 180834.249785 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2.D_4$ (as 16T92):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2\times C_2^2.D_4$ |
| Character table for $C_2\times C_2^2.D_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.87 | $x^{8} + 4 x^{7} + 6 x^{4} + 12 x^{2} + 2$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ |
| 2.8.24.14 | $x^{8} + 12 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 2$ | $8$ | $1$ | $24$ | $D_4$ | $[2, 3, 4]$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |