Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 6 x^{13} - 10 x^{12} + 28 x^{11} - 8 x^{10} - 90 x^{9} + 253 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(4897760256000000\)
\(\medspace = 2^{16}\cdot 3^{14}\cdot 5^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.56\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{7/8}5^{3/4}\approx 17.487937673507474$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{31}a^{15}-\frac{1}{31}a^{14}+\frac{5}{31}a^{13}+\frac{9}{31}a^{12}-\frac{14}{31}a^{11}-\frac{14}{31}a^{10}+\frac{12}{31}a^{9}+\frac{8}{31}a^{8}-\frac{2}{31}a^{7}+\frac{1}{31}a^{6}+\frac{2}{31}a^{5}-\frac{5}{31}a^{4}-\frac{14}{31}a^{3}+\frac{11}{31}a^{2}+\frac{6}{31}a+\frac{10}{31}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{628}{31} a^{15} - \frac{2705}{31} a^{14} + \frac{5248}{31} a^{13} - \frac{3555}{31} a^{12} - \frac{7893}{31} a^{11} + \frac{19945}{31} a^{10} - \frac{3624}{31} a^{9} - \frac{64912}{31} a^{8} + \frac{170050}{31} a^{7} - \frac{249666}{31} a^{6} + \frac{250775}{31} a^{5} - \frac{183529}{31} a^{4} + \frac{99119}{31} a^{3} - \frac{38848}{31} a^{2} + \frac{10030}{31} a - \frac{1408}{31} \)
(order $12$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{405}{31}a^{15}-\frac{1738}{31}a^{14}+\frac{3420}{31}a^{13}-\frac{2462}{31}a^{12}-\frac{4802}{31}a^{11}+\frac{12775}{31}a^{10}-\frac{3076}{31}a^{9}-\frac{40625}{31}a^{8}+\frac{110046}{31}a^{7}-\frac{165538}{31}a^{6}+\frac{170938}{31}a^{5}-\frac{128970}{31}a^{4}+\frac{71768}{31}a^{3}-\frac{29025}{31}a^{2}+\frac{7762}{31}a-\frac{1158}{31}$, $\frac{1779}{31}a^{15}-\frac{5375}{31}a^{14}+\frac{8089}{31}a^{13}-\frac{140}{31}a^{12}-\frac{21806}{31}a^{11}+\frac{28352}{31}a^{10}+\frac{24293}{31}a^{9}-\frac{149820}{31}a^{8}+\frac{290787}{31}a^{7}-\frac{346382}{31}a^{6}+\frac{290928}{31}a^{5}-\frac{176636}{31}a^{4}+\frac{78417}{31}a^{3}-\frac{23273}{31}a^{2}+\frac{4102}{31}a-\frac{128}{31}$, $\frac{333}{31}a^{15}-\frac{2100}{31}a^{14}+\frac{4734}{31}a^{13}-\frac{4784}{31}a^{12}-\frac{4290}{31}a^{11}+\frac{18619}{31}a^{10}-\frac{11938}{31}a^{9}-\frac{43898}{31}a^{8}+\frac{145127}{31}a^{7}-\frac{237344}{31}a^{6}+\frac{256292}{31}a^{5}-\frac{199631}{31}a^{4}+\frac{113479}{31}a^{3}-\frac{47053}{31}a^{2}+\frac{12879}{31}a-\frac{2033}{31}$, $\frac{375}{31}a^{15}-\frac{2359}{31}a^{14}+\frac{5161}{31}a^{13}-\frac{4964}{31}a^{12}-\frac{5312}{31}a^{11}+\frac{20604}{31}a^{10}-\frac{11496}{31}a^{9}-\frac{50878}{31}a^{8}+\frac{159706}{31}a^{7}-\frac{254569}{31}a^{6}+\frac{268559}{31}a^{5}-\frac{205266}{31}a^{4}+\frac{114627}{31}a^{3}-\frac{46808}{31}a^{2}+\frac{12511}{31}a-\frac{1954}{31}$, $\frac{640}{31}a^{15}-\frac{1973}{31}a^{14}+\frac{3045}{31}a^{13}-\frac{285}{31}a^{12}-\frac{7751}{31}a^{11}+\frac{10663}{31}a^{10}+\frac{7897}{31}a^{9}-\frac{54090}{31}a^{8}+\frac{108088}{31}a^{7}-\frac{132567}{31}a^{6}+\frac{115484}{31}a^{5}-\frac{73911}{31}a^{4}+\frac{35401}{31}a^{3}-\frac{11994}{31}a^{2}+\frac{2693}{31}a-\frac{265}{31}$, $\frac{12}{31}a^{15}+\frac{577}{31}a^{14}-\frac{1738}{31}a^{13}+\frac{2619}{31}a^{12}+\frac{49}{31}a^{11}-\frac{7298}{31}a^{10}+\frac{9227}{31}a^{9}+\frac{8187}{31}a^{8}-\frac{48787}{31}a^{7}+\frac{93105}{31}a^{6}-\frac{108445}{31}a^{5}+\frac{88724}{31}a^{4}-\frac{51876}{31}a^{3}+\frac{22018}{31}a^{2}-\frac{6066}{31}a+\frac{957}{31}$, $\frac{116}{31}a^{15}+\frac{535}{31}a^{14}-\frac{2117}{31}a^{13}+\frac{3958}{31}a^{12}-\frac{1438}{31}a^{11}-\frac{8909}{31}a^{10}+\frac{15404}{31}a^{9}+\frac{2385}{31}a^{8}-\frac{54885}{31}a^{7}+\frac{120365}{31}a^{6}-\frac{151048}{31}a^{5}+\frac{131232}{31}a^{4}-\frac{81232}{31}a^{3}+\frac{36399}{31}a^{2}-\frac{10588}{31}a+\frac{1749}{31}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 59.5214550029 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 59.5214550029 \cdot 1}{12\cdot\sqrt{4897760256000000}}\cr\approx \mathstrut & 0.172160088985 \end{aligned}\]
Galois group
A solvable group of order 64 |
The 28 conjugacy class representatives for $D_8:C_4$ |
Character table for $D_8:C_4$ |
Intermediate fields
\(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\), 8.0.4665600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 sibling: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| Deg $16$ | $2$ | $8$ | $16$ | |||
\(3\)
| 3.16.14.3 | $x^{16} + 36$ | $8$ | $2$ | $14$ | 16T49 | $[\ ]_{8}^{4}$ |
\(5\)
| 5.8.0.1 | $x^{8} + x^{4} + 3 x^{2} + 4 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
5.8.6.4 | $x^{8} - 20 x^{4} + 50$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |