Normalized defining polynomial
\( x^{16} + 26 x^{14} + 208 x^{12} - 182 x^{11} + 1157 x^{10} + 1703 x^{9} + 5603 x^{8} + 13052 x^{7} + 19968 x^{6} + 38246 x^{5} + 74919 x^{4} + 167440 x^{3} + 254696 x^{2} + 85111 x + 16913 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4882570767744501515595495649=13^{15}\cdot 157^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{261} a^{14} + \frac{4}{29} a^{13} + \frac{2}{29} a^{12} - \frac{11}{29} a^{11} + \frac{55}{261} a^{10} - \frac{128}{261} a^{9} - \frac{1}{87} a^{8} - \frac{11}{29} a^{7} - \frac{52}{261} a^{6} + \frac{119}{261} a^{5} - \frac{73}{261} a^{4} - \frac{20}{261} a^{3} + \frac{2}{261} a^{2} - \frac{70}{261} a + \frac{52}{261}$, $\frac{1}{890735647483629962122326903430520924007} a^{15} - \frac{333810755198879501112522998394609539}{890735647483629962122326903430520924007} a^{14} + \frac{8354581900681977511121366305377113782}{296911882494543320707442301143506974669} a^{13} - \frac{20508997830455181199153902257518583963}{296911882494543320707442301143506974669} a^{12} + \frac{2719742714040765804101416231373950157}{30715022327021722831804375980362790483} a^{11} - \frac{261425911246226701776942578368568337643}{890735647483629962122326903430520924007} a^{10} + \frac{6664438096673946294255009266974077077}{30715022327021722831804375980362790483} a^{9} - \frac{96366704577681549095923214455498932385}{296911882494543320707442301143506974669} a^{8} + \frac{442545757683397138764744795115761833948}{890735647483629962122326903430520924007} a^{7} - \frac{213472018689737263062789763029943190174}{890735647483629962122326903430520924007} a^{6} - \frac{6230935582418041872113923572596870362}{38727636847114346179231604496979170609} a^{5} - \frac{6706798286148560029399689827120884290}{98970627498181106902480767047835658223} a^{4} - \frac{27959115227651478400521866867395735688}{98970627498181106902480767047835658223} a^{3} + \frac{283493333960793832310647414189572456727}{890735647483629962122326903430520924007} a^{2} - \frac{36688584602579825989921465843433942544}{98970627498181106902480767047835658223} a + \frac{275316841910579449378704273158516651020}{890735647483629962122326903430520924007}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38532285.5451 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.9851517169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | $16$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 157 | Data not computed | ||||||