Normalized defining polynomial
\( x^{16} - 4 x^{15} + 44 x^{14} - 144 x^{13} + 1097 x^{12} - 3400 x^{11} + 18491 x^{10} - 52652 x^{9} + 222830 x^{8} - 586952 x^{7} + 1901988 x^{6} - 4222836 x^{5} + 10063831 x^{4} - 16091218 x^{3} + 22963320 x^{2} - 12168844 x + 25104719 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(488022614316879794822906640625=5^{8}\cdot 13^{4}\cdot 29^{6}\cdot 271181^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 271181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{12} - \frac{3}{22} a^{11} + \frac{3}{22} a^{10} + \frac{3}{22} a^{9} + \frac{1}{22} a^{8} - \frac{1}{22} a^{7} + \frac{3}{11} a^{6} + \frac{1}{22} a^{5} - \frac{5}{22} a^{4} + \frac{3}{11} a^{3} + \frac{2}{11} a^{2} + \frac{5}{22} a + \frac{3}{11}$, $\frac{1}{22} a^{13} + \frac{5}{22} a^{11} + \frac{1}{22} a^{10} - \frac{1}{22} a^{9} + \frac{1}{11} a^{8} - \frac{4}{11} a^{7} - \frac{3}{22} a^{6} + \frac{9}{22} a^{5} + \frac{1}{11} a^{4} - \frac{1}{2} a^{3} + \frac{3}{11} a^{2} - \frac{1}{22} a - \frac{2}{11}$, $\frac{1}{108295330} a^{14} + \frac{253623}{54147665} a^{13} - \frac{453359}{108295330} a^{12} - \frac{10108361}{54147665} a^{11} - \frac{8346751}{108295330} a^{10} - \frac{22097469}{108295330} a^{9} - \frac{23113861}{108295330} a^{8} - \frac{1466739}{21659066} a^{7} + \frac{5357083}{108295330} a^{6} + \frac{31761683}{108295330} a^{5} + \frac{10588139}{108295330} a^{4} + \frac{10207305}{21659066} a^{3} + \frac{37219269}{108295330} a^{2} + \frac{10124586}{54147665} a - \frac{26070091}{54147665}$, $\frac{1}{20444273655614996661779264719238825670610} a^{15} + \frac{12086916863920857661404628515137}{4088854731122999332355852943847765134122} a^{14} - \frac{2408753097258940956516953042283038482}{157263643504730743552148190147990966697} a^{13} + \frac{45911819761636080743859214202909157886}{10222136827807498330889632359619412835305} a^{12} - \frac{1749031147311173530112754164714902271262}{10222136827807498330889632359619412835305} a^{11} + \frac{1454527679137784517591216417349854853676}{10222136827807498330889632359619412835305} a^{10} - \frac{2264368217173229714563685626870456185957}{20444273655614996661779264719238825670610} a^{9} - \frac{2352956229811875456800241169144379692227}{10222136827807498330889632359619412835305} a^{8} + \frac{5557960723494900381312945795880254137133}{20444273655614996661779264719238825670610} a^{7} + \frac{1158643692251509994766216680748532057359}{4088854731122999332355852943847765134122} a^{6} + \frac{7968934736472200468665763254115437827851}{20444273655614996661779264719238825670610} a^{5} - \frac{338806197073956139672094389489956768249}{20444273655614996661779264719238825670610} a^{4} + \frac{1682695603614087228626873919675402770162}{10222136827807498330889632359619412835305} a^{3} - \frac{6665620459144750201265705184828343034487}{20444273655614996661779264719238825670610} a^{2} + \frac{1040141703427927373391580659948472424408}{10222136827807498330889632359619412835305} a + \frac{2125448948723749200260969398176777340461}{10222136827807498330889632359619412835305}$
Class group and class number
$C_{6}\times C_{1920}$, which has order $11520$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10968.6213178 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 76 conjugacy class representatives for t16n1177 are not computed |
| Character table for t16n1177 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.0.142539513125.1, 8.8.2576088125.1, 8.0.698586153825625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 271181 | Data not computed | ||||||