Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} - x^{13} - 2 x^{12} - 70 x^{11} + 141 x^{10} - 123 x^{9} + 158 x^{8} + 19 x^{7} + 929 x^{6} - 1583 x^{5} - 362 x^{4} - 332 x^{3} - 192 x^{2} - 1343 x + 6241 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(487941178183837890625=5^{12}\cdot 29^{4}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8618} a^{14} - \frac{1771}{8618} a^{13} + \frac{1015}{4309} a^{12} + \frac{1375}{8618} a^{11} + \frac{1353}{8618} a^{10} - \frac{117}{8618} a^{9} + \frac{997}{4309} a^{8} + \frac{535}{4309} a^{7} + \frac{1638}{4309} a^{6} + \frac{230}{4309} a^{5} + \frac{2439}{8618} a^{4} - \frac{1073}{4309} a^{3} + \frac{3973}{8618} a^{2} - \frac{1382}{4309} a + \frac{1084}{4309}$, $\frac{1}{42441760526863469710378} a^{15} + \frac{1662499782646896353}{42441760526863469710378} a^{14} - \frac{3356150645194546060166}{21220880263431734855189} a^{13} - \frac{80290074595074018017}{719351873336668978142} a^{12} - \frac{6417945313320881197}{62231320420620923329} a^{11} + \frac{4286956418918364682335}{21220880263431734855189} a^{10} + \frac{17598692171728520624199}{42441760526863469710378} a^{9} - \frac{11440288695000935981727}{42441760526863469710378} a^{8} - \frac{76501077256234540764}{268618737511794112091} a^{7} - \frac{3880276553662596621947}{42441760526863469710378} a^{6} + \frac{19892752527296221238601}{42441760526863469710378} a^{5} + \frac{158299097282834186255}{719351873336668978142} a^{4} - \frac{10161153287901097444217}{21220880263431734855189} a^{3} + \frac{323849106056873392966}{684544524626830156619} a^{2} + \frac{5413928596809059549639}{21220880263431734855189} a + \frac{3676290144692699091}{537237475023588224182}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{92264872579604276}{152668203334041257951} a^{15} - \frac{4406957200476015}{305336406668082515902} a^{14} + \frac{234005090517368381}{305336406668082515902} a^{13} + \frac{13195175322381869}{5175193333357330778} a^{12} + \frac{51025277566374707}{27757855151643865082} a^{11} - \frac{5848258757683258584}{152668203334041257951} a^{10} + \frac{2761569217922381159}{305336406668082515902} a^{9} - \frac{4519825600479675209}{152668203334041257951} a^{8} - \frac{289206055611859483}{3865017805925095138} a^{7} - \frac{247521067192834129}{305336406668082515902} a^{6} + \frac{76034068571275579932}{152668203334041257951} a^{5} + \frac{306521850217687950}{2587596666678665389} a^{4} - \frac{70561521861773684263}{305336406668082515902} a^{3} + \frac{56875579722137415193}{152668203334041257951} a^{2} - \frac{41288391908173626561}{152668203334041257951} a - \frac{3583318938837835874}{1932508902962547569} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19099.2258509 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2$ (as 16T79):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $C_2^5.C_2$ |
| Character table for $C_2^5.C_2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |