Normalized defining polynomial
\( x^{16} - 5 x^{15} + 21 x^{14} + 76 x^{13} + 120 x^{12} - 3593 x^{11} + 30285 x^{10} - 74414 x^{9} + 50527 x^{8} + 50279 x^{7} + 4001937 x^{6} - 25497960 x^{5} + 85920234 x^{4} - 154398062 x^{3} + 182698492 x^{2} - 89199484 x + 40301591 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(487891409452798143616318603515625=5^{12}\cdot 29^{10}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{44} a^{13} + \frac{5}{44} a^{12} - \frac{1}{11} a^{11} - \frac{9}{44} a^{10} + \frac{1}{4} a^{9} + \frac{19}{44} a^{8} + \frac{4}{11} a^{7} + \frac{3}{11} a^{6} + \frac{1}{22} a^{5} + \frac{5}{11} a^{4} + \frac{1}{4} a^{3} + \frac{7}{22} a^{2} - \frac{21}{44} a$, $\frac{1}{176} a^{14} - \frac{9}{88} a^{12} - \frac{1}{8} a^{11} - \frac{2}{11} a^{10} - \frac{47}{176} a^{9} + \frac{21}{88} a^{8} + \frac{53}{176} a^{7} + \frac{37}{88} a^{6} + \frac{27}{88} a^{5} - \frac{23}{176} a^{4} - \frac{85}{176} a^{3} - \frac{7}{88} a^{2} + \frac{39}{176} a + \frac{3}{16}$, $\frac{1}{6002378348384833273941496397650470902955971532472825936} a^{15} + \frac{307200007319452632398939012375129444724527955177631}{157957324957495612472144642043433444814630829801916472} a^{14} + \frac{17986978897940778745259631083745759165209917709867959}{3001189174192416636970748198825235451477985766236412968} a^{13} - \frac{327446433726973112053739263374608329400566403152492755}{3001189174192416636970748198825235451477985766236412968} a^{12} + \frac{21634230742086474574071996082518609782888218190767261}{750297293548104159242687049706308862869496441559103242} a^{11} + \frac{1387425008749579901629744435423233135664205443543638977}{6002378348384833273941496397650470902955971532472825936} a^{10} + \frac{1470334856083298819586514664709902754540299401926007}{3714343037366852273478648760922321103314338819599521} a^{9} - \frac{133601539212675668006250251636668791928239962451906009}{315914649914991224944289284086866889629261659603832944} a^{8} - \frac{371722558222242784896626059993387632421393883091827813}{750297293548104159242687049706308862869496441559103242} a^{7} + \frac{75182433211902081512962996316006025245898505306882669}{3001189174192416636970748198825235451477985766236412968} a^{6} + \frac{28688304734230467022215233244455014294232864450380449}{59429488597869636375658380174757137653029421113592336} a^{5} + \frac{2516097868717240031902662130629262667722970042985880189}{6002378348384833273941496397650470902955971532472825936} a^{4} - \frac{2366406812503158166915632821247339437764484437714210}{375148646774052079621343524853154431434748220779551621} a^{3} + \frac{2516867238749741605797903277484219280582718951510630087}{6002378348384833273941496397650470902955971532472825936} a^{2} - \frac{692595763863002385586672953908174918276065364111125633}{6002378348384833273941496397650470902955971532472825936} a + \frac{52755328288406945013334253645403570379528904211837393}{272835379472037876088249836256839586497998706021492088}$
Class group and class number
$C_{2}\times C_{2}\times C_{36}$, which has order $144$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 294954156.828 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T516):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.862025.1, 4.0.3625.1, 4.4.148625.2, 8.0.18577177515625.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||