Normalized defining polynomial
\( x^{16} - 7 x^{15} + 21 x^{14} - 13 x^{13} - 214 x^{12} + 919 x^{11} - 841 x^{10} - 3714 x^{9} + 11282 x^{8} - 6054 x^{7} - 23126 x^{6} + 47194 x^{5} - 21139 x^{4} - 39468 x^{3} + 66681 x^{2} - 41202 x + 9801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48736115900396728515625=5^{14}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} - \frac{1}{3} a^{12} - \frac{4}{9} a^{11} - \frac{4}{9} a^{10} + \frac{4}{9} a^{9} + \frac{2}{9} a^{8} - \frac{1}{3} a^{7} - \frac{4}{9} a^{6} - \frac{1}{3} a^{5} + \frac{4}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{9} a^{2}$, $\frac{1}{77590941645085562490687} a^{15} - \frac{735380798818416969334}{77590941645085562490687} a^{14} + \frac{351422356430163616915}{8621215738342840276743} a^{13} - \frac{10596778918813057980865}{77590941645085562490687} a^{12} + \frac{3758147097184625022710}{77590941645085562490687} a^{11} - \frac{882314563010459796236}{77590941645085562490687} a^{10} - \frac{7670720454139706043511}{77590941645085562490687} a^{9} - \frac{3655654785464273574467}{8621215738342840276743} a^{8} + \frac{15253750427358959417372}{77590941645085562490687} a^{7} + \frac{782436368380036512528}{2873738579447613425581} a^{6} + \frac{8378743405733295676951}{77590941645085562490687} a^{5} - \frac{15812662798901732742908}{77590941645085562490687} a^{4} - \frac{30863258538757282949215}{77590941645085562490687} a^{3} - \frac{10838921707979519211245}{25863647215028520830229} a^{2} + \frac{3092095070962560738143}{8621215738342840276743} a + \frac{108450587224534869335}{261248961767964856871}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{284560717286636053}{38544928785437437899} a^{15} - \frac{1543431475348409546}{38544928785437437899} a^{14} + \frac{3609022863917952616}{38544928785437437899} a^{13} + \frac{1672862797833276146}{38544928785437437899} a^{12} - \frac{19218123458178755144}{12848309595145812633} a^{11} + \frac{171354011597994012389}{38544928785437437899} a^{10} + \frac{18337999188524074510}{38544928785437437899} a^{9} - \frac{997911003713745953789}{38544928785437437899} a^{8} + \frac{1664122451679774490550}{38544928785437437899} a^{7} + \frac{705690516808865493712}{38544928785437437899} a^{6} - \frac{5284745126839083074780}{38544928785437437899} a^{5} + \frac{1796752793196559891736}{12848309595145812633} a^{4} + \frac{1766809674187435298038}{38544928785437437899} a^{3} - \frac{8142838640875326118592}{38544928785437437899} a^{2} + \frac{2215402801703996951401}{12848309595145812633} a - \frac{210589846276674768008}{4282769865048604211} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93871.1737576 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T157):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.5384453125.1 x2, 8.0.26265625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||