Normalized defining polynomial
\( x^{16} - 7 x^{15} + 13 x^{14} + 51 x^{13} - 325 x^{12} + 616 x^{11} + 458 x^{10} - 4847 x^{9} + 10281 x^{8} - 7000 x^{7} - 8180 x^{6} + 12050 x^{5} + 19365 x^{4} - 58345 x^{3} + 56890 x^{2} - 25615 x + 5555 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48736115900396728515625=5^{14}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{341} a^{14} - \frac{74}{341} a^{13} + \frac{10}{31} a^{12} + \frac{142}{341} a^{11} + \frac{28}{341} a^{10} + \frac{26}{341} a^{9} + \frac{1}{11} a^{8} + \frac{21}{341} a^{7} + \frac{39}{341} a^{6} + \frac{14}{31} a^{5} - \frac{67}{341} a^{4} + \frac{72}{341} a^{3} - \frac{90}{341} a^{2} + \frac{73}{341} a + \frac{14}{31}$, $\frac{1}{4037854871152135722327353011} a^{15} - \frac{1359372353217401655508677}{4037854871152135722327353011} a^{14} + \frac{1707185227822634332103956032}{4037854871152135722327353011} a^{13} - \frac{346441654009902953968722389}{4037854871152135722327353011} a^{12} - \frac{194526872407380338616879493}{4037854871152135722327353011} a^{11} + \frac{22094488544429876441624822}{212518677429059774859334369} a^{10} + \frac{1882637262085276164544777264}{4037854871152135722327353011} a^{9} - \frac{1398217920530244714903504742}{4037854871152135722327353011} a^{8} + \frac{1392168840127088417577190020}{4037854871152135722327353011} a^{7} - \frac{1162753792451353319780973771}{4037854871152135722327353011} a^{6} + \frac{1897244528502786555248832180}{4037854871152135722327353011} a^{5} + \frac{1357835531342022852032485849}{4037854871152135722327353011} a^{4} + \frac{15527580996457113167542515}{33370701414480460515102091} a^{3} - \frac{5568083823366278299954667}{212518677429059774859334369} a^{2} + \frac{1178890333062532606830929610}{4037854871152135722327353011} a - \frac{78490828536105236072685376}{367077715559285065666123001}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{85800058747334988590717}{130253382940391474913785581} a^{15} - \frac{478467563926915695221128}{130253382940391474913785581} a^{14} + \frac{376547225127083671748611}{130253382940391474913785581} a^{13} + \frac{5215078424206815295915315}{130253382940391474913785581} a^{12} - \frac{20570938158129908603406745}{130253382940391474913785581} a^{11} + \frac{1050010970856532882393281}{6855441207389024995462399} a^{10} + \frac{80051502663734380368207705}{130253382940391474913785581} a^{9} - \frac{309491583960934896420476860}{130253382940391474913785581} a^{8} + \frac{383470350408139128305281223}{130253382940391474913785581} a^{7} + \frac{128515587332448549742942150}{130253382940391474913785581} a^{6} - \frac{693223885192823854923068803}{130253382940391474913785581} a^{5} - \frac{117165169500258112863822926}{130253382940391474913785581} a^{4} + \frac{171289367989039534031947496}{11841216630944679537616871} a^{3} - \frac{110924548250287532802897839}{6855441207389024995462399} a^{2} + \frac{799306587725417614089746035}{130253382940391474913785581} a - \frac{3930390127566433302308586}{11841216630944679537616871} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120397.53998 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.5125.1, 4.0.1025.1, 8.0.5384453125.1 x2, 8.4.220762578125.1 x2, 8.0.26265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |