Normalized defining polynomial
\( x^{16} - 2 x^{15} - 8 x^{14} + 29 x^{13} + 57 x^{12} + 154 x^{11} - 1287 x^{10} + 12 x^{9} + 13555 x^{8} - 13559 x^{7} + 9764 x^{6} - 5961 x^{5} + 3238 x^{4} - 1671 x^{3} + 765 x^{2} - 297 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4864654886938945556640625=5^{12}\cdot 109^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{10} a^{12} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} + \frac{2}{5} a^{8} - \frac{3}{10} a^{7} - \frac{3}{10} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{5517177630} a^{13} + \frac{16772447}{1103435526} a^{12} - \frac{233892601}{1103435526} a^{11} + \frac{1332579179}{5517177630} a^{10} - \frac{98073691}{919529605} a^{9} - \frac{1499038637}{5517177630} a^{8} - \frac{76418669}{367811842} a^{7} - \frac{314155303}{1839059210} a^{6} + \frac{791977903}{5517177630} a^{5} - \frac{377028376}{2758588815} a^{4} + \frac{20985377}{5517177630} a^{3} - \frac{285517117}{1839059210} a^{2} - \frac{1907598239}{5517177630} a - \frac{142129697}{1839059210}$, $\frac{1}{16551532890} a^{14} + \frac{1}{16551532890} a^{13} - \frac{334798108}{8275766445} a^{12} + \frac{1638325249}{8275766445} a^{11} + \frac{82325199}{919529605} a^{10} - \frac{3870956933}{16551532890} a^{9} + \frac{2562488443}{5517177630} a^{8} + \frac{986119619}{2758588815} a^{7} - \frac{3368864569}{8275766445} a^{6} + \frac{968930504}{8275766445} a^{5} - \frac{3165677521}{16551532890} a^{4} + \frac{1840760749}{5517177630} a^{3} + \frac{1513437452}{8275766445} a^{2} + \frac{138171770}{551717763} a + \frac{191573341}{919529605}$, $\frac{1}{248272993350} a^{15} - \frac{1}{49654598670} a^{14} + \frac{7}{248272993350} a^{13} - \frac{5362978811}{124136496675} a^{12} - \frac{3211813159}{82757664450} a^{11} + \frac{4357961147}{49654598670} a^{10} - \frac{17357864479}{82757664450} a^{9} - \frac{12555795449}{82757664450} a^{8} - \frac{19278697522}{124136496675} a^{7} + \frac{108998743573}{248272993350} a^{6} + \frac{7411811383}{49654598670} a^{5} + \frac{13790187131}{27585888150} a^{4} + \frac{33697179061}{248272993350} a^{3} - \frac{285099742}{725944425} a^{2} + \frac{12624735343}{27585888150} a + \frac{2147377828}{4597648025}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{530854489}{49654598670} a^{15} - \frac{48259499}{2613399930} a^{14} - \frac{2267455384}{24827299335} a^{13} + \frac{2847310441}{9930919734} a^{12} + \frac{5742880381}{8275766445} a^{11} + \frac{18000793127}{9930919734} a^{10} - \frac{44060922587}{3310306578} a^{9} - \frac{29865124069}{8275766445} a^{8} + \frac{7197469940359}{49654598670} a^{7} - \frac{2617691744758}{24827299335} a^{6} + \frac{3220211589773}{49654598670} a^{5} - \frac{194534040469}{5517177630} a^{4} + \frac{106383282829}{4965459867} a^{3} - \frac{15491299179}{1839059210} a^{2} + \frac{3040348437}{919529605} a - \frac{868670982}{919529605} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 589962.086805 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $109$ | 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |