Normalized defining polynomial
\( x^{16} - 4 x^{15} + 33 x^{14} - 166 x^{13} + 664 x^{12} - 2044 x^{11} + 6442 x^{10} - 16316 x^{9} + 30006 x^{8} - 48148 x^{7} + 55708 x^{6} - 11284 x^{5} - 10539 x^{4} + 1424 x^{3} + 67353 x^{2} + 44442 x + 18684 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48614142345328546750712906513=17^{15}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{8} + \frac{1}{12} a^{7} - \frac{1}{6} a^{6} - \frac{1}{24} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{7}{24} a^{2} + \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{9} + \frac{1}{8} a^{6} - \frac{1}{6} a^{4} - \frac{1}{8} a^{3} + \frac{1}{6} a$, $\frac{1}{1872} a^{13} + \frac{23}{1872} a^{12} - \frac{25}{1872} a^{11} - \frac{5}{208} a^{10} + \frac{23}{1872} a^{9} + \frac{71}{1872} a^{8} - \frac{319}{1872} a^{7} - \frac{151}{1872} a^{6} - \frac{203}{1872} a^{5} + \frac{17}{208} a^{4} - \frac{145}{624} a^{3} + \frac{389}{1872} a^{2} + \frac{11}{24} a - \frac{11}{52}$, $\frac{1}{7488} a^{14} - \frac{43}{3744} a^{12} - \frac{47}{3744} a^{11} - \frac{95}{3744} a^{10} + \frac{83}{3744} a^{9} - \frac{59}{1872} a^{8} - \frac{463}{3744} a^{7} + \frac{69}{416} a^{6} - \frac{709}{3744} a^{5} - \frac{295}{1248} a^{4} - \frac{1823}{3744} a^{3} + \frac{3299}{7488} a^{2} - \frac{599}{1248} a - \frac{7}{208}$, $\frac{1}{406737364782206427339816576} a^{15} + \frac{5418272308314582280105}{135579121594068809113272192} a^{14} - \frac{38940601263128227792867}{203368682391103213669908288} a^{13} + \frac{133376935145627920635191}{25421085298887901708738536} a^{12} + \frac{37230028286647066017451}{3177635662360987713592317} a^{11} - \frac{191607491893926641713493}{101684341195551606834954144} a^{10} - \frac{4612679690306999410597333}{203368682391103213669908288} a^{9} + \frac{1202626290286234705869179}{203368682391103213669908288} a^{8} - \frac{460501735447231893725995}{8473695099629300569579512} a^{7} - \frac{14743125589919458122909707}{101684341195551606834954144} a^{6} - \frac{3169974894550014264710}{19985129951955897569763} a^{5} + \frac{12178174857008006082841001}{101684341195551606834954144} a^{4} - \frac{162845726020538112719308039}{406737364782206427339816576} a^{3} + \frac{16387768864488525154201911}{45193040531356269704424064} a^{2} - \frac{23205588953182494556445791}{67789560797034404556636096} a - \frac{29537366049052890976985}{65307862039532181653792}$
Class group and class number
$C_{16}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95524847.8008 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-323}) \), 4.0.1773593.1, 8.0.53475746204033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | R | $16$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |