Normalized defining polynomial
\( x^{16} - 2 x^{15} - 13 x^{14} + 28 x^{13} + 67 x^{12} - 160 x^{11} - 142 x^{10} + 350 x^{9} + 457 x^{8} - 1188 x^{7} + 462 x^{6} + 486 x^{5} - 354 x^{4} - 126 x^{3} + 198 x^{2} - 72 x + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(482071511786234904576=2^{16}\cdot 3^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{12099} a^{14} + \frac{116}{4033} a^{13} + \frac{149}{4033} a^{12} - \frac{1619}{12099} a^{11} - \frac{5159}{12099} a^{10} - \frac{343}{4033} a^{9} + \frac{1544}{12099} a^{8} - \frac{2492}{12099} a^{7} - \frac{1542}{4033} a^{6} - \frac{661}{4033} a^{5} + \frac{1955}{12099} a^{4} - \frac{1511}{4033} a^{3} - \frac{1536}{4033} a^{2} - \frac{726}{4033} a + \frac{1256}{4033}$, $\frac{1}{1125207} a^{15} + \frac{1}{36297} a^{14} - \frac{162298}{1125207} a^{13} + \frac{74464}{1125207} a^{12} - \frac{28325}{1125207} a^{11} + \frac{162329}{1125207} a^{10} - \frac{543391}{1125207} a^{9} + \frac{84779}{1125207} a^{8} + \frac{446566}{1125207} a^{7} + \frac{40490}{375069} a^{6} + \frac{110708}{375069} a^{5} - \frac{56816}{125023} a^{4} - \frac{151697}{375069} a^{3} - \frac{55720}{125023} a^{2} + \frac{268}{3379} a - \frac{34581}{125023}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{19080775}{1125207} a^{15} - \frac{786599}{36297} a^{14} - \frac{265895101}{1125207} a^{13} + \frac{342452590}{1125207} a^{12} + \frac{1529078002}{1125207} a^{11} - \frac{1951315915}{1125207} a^{10} - \frac{37968802}{10323} a^{9} + \frac{3703437530}{1125207} a^{8} + \frac{11451582949}{1125207} a^{7} - \frac{4804683568}{375069} a^{6} - \frac{579809458}{375069} a^{5} + \frac{901962828}{125023} a^{4} - \frac{275671319}{375069} a^{3} - \frac{340182137}{125023} a^{2} + \frac{172184773}{125023} a - \frac{25486803}{125023} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15923.474336 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8 : C_2$ |
| Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |