Normalized defining polynomial
\( x^{16} - 6 x^{15} + 21 x^{14} - 56 x^{13} + 81 x^{12} - 74 x^{11} + 75 x^{10} + 222 x^{9} - 131 x^{8} + 2056 x^{7} + 336 x^{6} + 3352 x^{5} + 3101 x^{4} + 1602 x^{3} + 5492 x^{2} - 3816 x + 16336 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48003408671952806969030689=17^{10}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{11} - \frac{3}{14} a^{10} + \frac{1}{7} a^{8} + \frac{1}{14} a^{7} + \frac{3}{14} a^{6} - \frac{5}{14} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{1}{14} a^{2} + \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{28} a^{12} - \frac{1}{14} a^{10} + \frac{1}{14} a^{9} - \frac{1}{4} a^{8} + \frac{3}{14} a^{7} + \frac{1}{7} a^{6} - \frac{1}{14} a^{5} - \frac{11}{28} a^{4} - \frac{1}{14} a^{3} + \frac{1}{4} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{84} a^{13} + \frac{1}{42} a^{11} - \frac{5}{42} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{5}{21} a^{7} - \frac{3}{14} a^{6} + \frac{25}{84} a^{5} + \frac{2}{21} a^{4} + \frac{17}{84} a^{3} - \frac{5}{14} a^{2} + \frac{8}{21} a - \frac{4}{21}$, $\frac{1}{168} a^{14} - \frac{1}{168} a^{13} + \frac{1}{84} a^{12} - \frac{19}{168} a^{10} - \frac{1}{8} a^{9} - \frac{1}{7} a^{8} - \frac{1}{6} a^{7} + \frac{37}{168} a^{6} - \frac{5}{24} a^{5} - \frac{15}{56} a^{4} - \frac{59}{168} a^{3} + \frac{4}{21} a^{2} - \frac{4}{21}$, $\frac{1}{2122608577430068114363704} a^{15} + \frac{2984879498122037021953}{1061304288715034057181852} a^{14} + \frac{1593610898610170967019}{2122608577430068114363704} a^{13} + \frac{306383038092925348865}{58961349373057447621214} a^{12} - \frac{703966272353434870329}{33692199641747112926408} a^{11} - \frac{111606828216177333530815}{1061304288715034057181852} a^{10} + \frac{181691174460588749678153}{2122608577430068114363704} a^{9} + \frac{39974335101183589426715}{1061304288715034057181852} a^{8} - \frac{54165949730065043083121}{707536192476689371454568} a^{7} + \frac{98896115924879022837145}{530652144357517028590926} a^{6} + \frac{453970870500847603959961}{1061304288715034057181852} a^{5} + \frac{868895370436098600409}{2915671122843500157093} a^{4} - \frac{61082943665123086996593}{235845397492229790484856} a^{3} + \frac{46852542925083059965051}{353768096238344685727284} a^{2} - \frac{5066939587284542851064}{20409697859904501099651} a - \frac{99419100724797459684646}{265326072178758514295463}$
Class group and class number
$C_{20}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 145848.015244 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-799}) \), 4.0.37553.1 x2, 4.2.13583.1 x2, \(\Q(\sqrt{17}, \sqrt{-47})\), 8.0.6928449225617.2, 8.0.23973872753.2, 8.0.407555836801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |