Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} - 11 x^{12} + 214 x^{11} - 181 x^{10} - 506 x^{9} + 1977 x^{8} - 954 x^{7} + 2107 x^{6} + 10450 x^{5} - 16 x^{4} + 934 x^{3} + 20095 x^{2} + 18530 x + 5644 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48003408671952806969030689=17^{10}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} + \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} + \frac{3}{16} a^{3} + \frac{7}{16} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{5}{16} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} + \frac{1}{32} a^{8} + \frac{3}{16} a^{7} + \frac{7}{32} a^{6} - \frac{1}{4} a^{5} + \frac{5}{32} a^{4} + \frac{1}{4} a^{3} + \frac{3}{32} a^{2} - \frac{7}{16} a + \frac{3}{8}$, $\frac{1}{96} a^{13} + \frac{1}{96} a^{12} - \frac{1}{32} a^{11} - \frac{1}{96} a^{10} + \frac{1}{96} a^{9} - \frac{1}{32} a^{8} + \frac{3}{32} a^{7} + \frac{5}{32} a^{6} - \frac{3}{32} a^{5} + \frac{7}{32} a^{4} + \frac{19}{96} a^{3} + \frac{13}{32} a^{2} + \frac{13}{48} a - \frac{11}{24}$, $\frac{1}{576} a^{14} - \frac{1}{192} a^{13} + \frac{1}{288} a^{12} - \frac{13}{576} a^{11} + \frac{1}{288} a^{10} + \frac{23}{576} a^{9} - \frac{1}{16} a^{8} - \frac{11}{64} a^{7} + \frac{19}{96} a^{6} - \frac{37}{192} a^{5} - \frac{61}{288} a^{4} + \frac{173}{576} a^{3} + \frac{107}{576} a^{2} - \frac{11}{288} a + \frac{5}{144}$, $\frac{1}{464374761191109874542528} a^{15} - \frac{297621717696320455}{345516935410051989987} a^{14} + \frac{777012393883182275627}{464374761191109874542528} a^{13} - \frac{240163504345720591837}{464374761191109874542528} a^{12} + \frac{5841863841143362845593}{464374761191109874542528} a^{11} + \frac{14459991135495930850895}{464374761191109874542528} a^{10} - \frac{10537960320666452948779}{154791587063703291514176} a^{9} + \frac{20041201986601056637}{7371027955414442453056} a^{8} + \frac{28464902423694414764969}{154791587063703291514176} a^{7} - \frac{10760354881288296980401}{154791587063703291514176} a^{6} - \frac{1623732499272402067901}{464374761191109874542528} a^{5} - \frac{2379231936308475059719}{35721135476239221118656} a^{4} + \frac{22491786516220968343055}{116093690297777468635632} a^{3} - \frac{52311299916099272288431}{464374761191109874542528} a^{2} - \frac{3882470363793605091589}{13658081211503231604192} a + \frac{2765466849746722769}{27425865886552673904}$
Class group and class number
$C_{20}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 958441.505034 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-799}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-47}) \), 4.0.37553.1 x2, \(\Q(\sqrt{17}, \sqrt{-47})\), 4.2.13583.1 x2, 8.0.407555836801.1 x2, 8.0.407555836801.2, 8.0.6928449225617.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |