Normalized defining polynomial
\( x^{16} + 56 x^{14} + 1581 x^{12} + 24416 x^{10} + 221976 x^{8} + 961100 x^{6} + 2238125 x^{4} + 1312500 x^{2} + 390625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47991168245852798976000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2040=2^{3}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2040}(1,·)$, $\chi_{2040}(1157,·)$, $\chi_{2040}(1223,·)$, $\chi_{2040}(1291,·)$, $\chi_{2040}(851,·)$, $\chi_{2040}(407,·)$, $\chi_{2040}(409,·)$, $\chi_{2040}(1121,·)$, $\chi_{2040}(1699,·)$, $\chi_{2040}(103,·)$, $\chi_{2040}(1259,·)$, $\chi_{2040}(1327,·)$, $\chi_{2040}(1973,·)$, $\chi_{2040}(1529,·)$, $\chi_{2040}(1597,·)$, $\chi_{2040}(373,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{25} a^{10} + \frac{6}{25} a^{8} + \frac{6}{25} a^{6} - \frac{9}{25} a^{4} + \frac{1}{25} a^{2}$, $\frac{1}{125} a^{11} + \frac{6}{125} a^{9} + \frac{31}{125} a^{7} - \frac{9}{125} a^{5} + \frac{51}{125} a^{3} + \frac{2}{5} a$, $\frac{1}{2500} a^{12} - \frac{11}{625} a^{10} + \frac{89}{625} a^{8} - \frac{296}{625} a^{6} + \frac{94}{625} a^{4} + \frac{2}{5} a^{2} + \frac{1}{4}$, $\frac{1}{12500} a^{13} - \frac{11}{3125} a^{11} + \frac{89}{3125} a^{9} - \frac{296}{3125} a^{7} + \frac{94}{3125} a^{5} - \frac{8}{25} a^{3} - \frac{3}{20} a$, $\frac{1}{457807386422562500} a^{14} - \frac{23921881233919}{457807386422562500} a^{12} - \frac{30171548522719}{6023781400296875} a^{10} + \frac{37041652009702329}{114451846605640625} a^{8} - \frac{34293066483902281}{114451846605640625} a^{6} + \frac{2238016631532}{48190251202375} a^{4} + \frac{311116568117309}{732491818276100} a^{2} - \frac{9536873685175}{29299672731044}$, $\frac{1}{2289036932112812500} a^{15} - \frac{23921881233919}{2289036932112812500} a^{13} - \frac{30171548522719}{30118907001484375} a^{11} + \frac{37041652009702329}{572259233028203125} a^{9} + \frac{80158780121738344}{572259233028203125} a^{7} + \frac{2238016631532}{240951256011875} a^{5} + \frac{1043608386393409}{3662459091380500} a^{3} - \frac{38836546416219}{146498363655220} a$
Class group and class number
$C_{6}\times C_{6}\times C_{12}\times C_{240}$, which has order $103680$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58630.77118534252 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.1 | $x^{8} + 6 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 12$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.1 | $x^{8} + 6 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 12$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |