Properties

Label 16.0.47991168245...000.58
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 17^{8}$
Root discriminant $95.52$
Ramified primes $2, 3, 5, 17$
Class number $470016$ (GRH)
Class group $[12, 48, 816]$ (GRH)
Galois group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6975757441, 0, 39392512608, 0, 10620530360, 0, 1113167888, 0, 59633994, 0, 1788332, 0, 30345, 0, 272, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 272*x^14 + 30345*x^12 + 1788332*x^10 + 59633994*x^8 + 1113167888*x^6 + 10620530360*x^4 + 39392512608*x^2 + 6975757441)
 
gp: K = bnfinit(x^16 + 272*x^14 + 30345*x^12 + 1788332*x^10 + 59633994*x^8 + 1113167888*x^6 + 10620530360*x^4 + 39392512608*x^2 + 6975757441, 1)
 

Normalized defining polynomial

\( x^{16} + 272 x^{14} + 30345 x^{12} + 1788332 x^{10} + 59633994 x^{8} + 1113167888 x^{6} + 10620530360 x^{4} + 39392512608 x^{2} + 6975757441 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(47991168245852798976000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $95.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2040=2^{3}\cdot 3\cdot 5\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{2040}(1,·)$, $\chi_{2040}(203,·)$, $\chi_{2040}(137,·)$, $\chi_{2040}(1291,·)$, $\chi_{2040}(1871,·)$, $\chi_{2040}(1427,·)$, $\chi_{2040}(409,·)$, $\chi_{2040}(1327,·)$, $\chi_{2040}(1597,·)$, $\chi_{2040}(1699,·)$, $\chi_{2040}(101,·)$, $\chi_{2040}(103,·)$, $\chi_{2040}(239,·)$, $\chi_{2040}(373,·)$, $\chi_{2040}(953,·)$, $\chi_{2040}(509,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{17} a^{2}$, $\frac{1}{17} a^{3}$, $\frac{1}{289} a^{4}$, $\frac{1}{289} a^{5}$, $\frac{1}{4913} a^{6}$, $\frac{1}{4913} a^{7}$, $\frac{1}{83521} a^{8}$, $\frac{1}{83521} a^{9}$, $\frac{1}{1419857} a^{10}$, $\frac{1}{1419857} a^{11}$, $\frac{1}{24137569} a^{12}$, $\frac{1}{24137569} a^{13}$, $\frac{1}{410338673} a^{14}$, $\frac{1}{410338673} a^{15}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{12}\times C_{48}\times C_{816}$, which has order $470016$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3121.7160224989234 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_4$ (as 16T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{-170}) \), \(\Q(\sqrt{-510}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{-102}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{3}, \sqrt{-170})\), \(\Q(\sqrt{5}, \sqrt{-34})\), \(\Q(\sqrt{15}, \sqrt{-102})\), \(\Q(\sqrt{5}, \sqrt{-102})\), \(\Q(\sqrt{15}, \sqrt{-34})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-34})\), 4.0.2312000.1, \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{15})^+\), 4.0.20808000.2, 8.0.277102632960000.156, 8.0.85525504000000.22, 8.0.432972864000000.134, 8.0.432972864000000.133, 8.0.6927565824000000.105, 8.0.6927565824000000.98, \(\Q(\zeta_{60})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$17$17.8.4.1$x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
17.8.4.1$x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$