Normalized defining polynomial
\( x^{16} - 8 x^{15} + 116 x^{14} - 672 x^{13} + 5704 x^{12} - 25852 x^{11} + 161722 x^{10} - 586696 x^{9} + 2927421 x^{8} - 8448140 x^{7} + 34806462 x^{6} - 77057656 x^{5} + 265837154 x^{4} - 412056200 x^{3} + 1190242220 x^{2} - 995805576 x + 2376274876 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47991168245852798976000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2040=2^{3}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2040}(1,·)$, $\chi_{2040}(1223,·)$, $\chi_{2040}(203,·)$, $\chi_{2040}(1427,·)$, $\chi_{2040}(1429,·)$, $\chi_{2040}(407,·)$, $\chi_{2040}(409,·)$, $\chi_{2040}(1121,·)$, $\chi_{2040}(1123,·)$, $\chi_{2040}(101,·)$, $\chi_{2040}(103,·)$, $\chi_{2040}(1327,·)$, $\chi_{2040}(307,·)$, $\chi_{2040}(1021,·)$, $\chi_{2040}(1529,·)$, $\chi_{2040}(509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{92937983149830856522} a^{14} - \frac{7}{92937983149830856522} a^{13} + \frac{13915088121536291779}{92937983149830856522} a^{12} + \frac{9447454420613105939}{92937983149830856522} a^{11} - \frac{8187700869392609181}{46468991574915428261} a^{10} + \frac{5382503514972214978}{46468991574915428261} a^{9} - \frac{8912673495892213645}{92937983149830856522} a^{8} - \frac{17955332719184416063}{92937983149830856522} a^{7} + \frac{33362536778499990933}{92937983149830856522} a^{6} - \frac{21602528399467391175}{92937983149830856522} a^{5} + \frac{3491339663542516519}{46468991574915428261} a^{4} - \frac{7473519574435885774}{46468991574915428261} a^{3} + \frac{9199872151164322404}{46468991574915428261} a^{2} - \frac{6539767238903242827}{46468991574915428261} a + \frac{6195710676670226937}{46468991574915428261}$, $\frac{1}{1100400683509284463988380042} a^{15} + \frac{5920073}{1100400683509284463988380042} a^{14} + \frac{7340039756255614676105995}{550200341754642231994190021} a^{13} + \frac{131029047945043377970760868}{550200341754642231994190021} a^{12} - \frac{268186760337921398409227359}{1100400683509284463988380042} a^{11} + \frac{259420931389389539836427805}{1100400683509284463988380042} a^{10} - \frac{249883117513106962002686147}{1100400683509284463988380042} a^{9} + \frac{137486349622838831091922438}{550200341754642231994190021} a^{8} + \frac{40515272713917423465167375}{550200341754642231994190021} a^{7} + \frac{156864022701477593756572885}{550200341754642231994190021} a^{6} + \frac{120879107187586291321600353}{1100400683509284463988380042} a^{5} - \frac{57810293186445439006958887}{550200341754642231994190021} a^{4} - \frac{120863988975695676799628061}{550200341754642231994190021} a^{3} - \frac{60092872453314268168492059}{550200341754642231994190021} a^{2} - \frac{29929953864923223272875431}{550200341754642231994190021} a + \frac{243952924526854346873107196}{550200341754642231994190021}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{8160}$, which has order $261120$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.135357253273 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |