Normalized defining polynomial
\( x^{16} - 4 x^{15} + 54 x^{14} - 164 x^{13} + 1529 x^{12} - 4056 x^{11} + 30078 x^{10} - 70272 x^{9} + 426051 x^{8} - 854320 x^{7} + 4275808 x^{6} - 6891612 x^{5} + 28648659 x^{4} - 33425040 x^{3} + 115796640 x^{2} - 76098832 x + 210560401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47991168245852798976000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2040=2^{3}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2040}(1,·)$, $\chi_{2040}(203,·)$, $\chi_{2040}(1157,·)$, $\chi_{2040}(1223,·)$, $\chi_{2040}(137,·)$, $\chi_{2040}(1291,·)$, $\chi_{2040}(271,·)$, $\chi_{2040}(1427,·)$, $\chi_{2040}(1429,·)$, $\chi_{2040}(407,·)$, $\chi_{2040}(409,·)$, $\chi_{2040}(1699,·)$, $\chi_{2040}(679,·)$, $\chi_{2040}(1973,·)$, $\chi_{2040}(953,·)$, $\chi_{2040}(1021,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{1593} a^{12} + \frac{77}{531} a^{11} + \frac{109}{1593} a^{10} - \frac{107}{1593} a^{9} + \frac{8}{531} a^{8} - \frac{41}{531} a^{7} + \frac{103}{1593} a^{6} - \frac{8}{59} a^{5} + \frac{196}{1593} a^{4} - \frac{763}{1593} a^{3} + \frac{98}{531} a^{2} + \frac{34}{1593} a + \frac{289}{1593}$, $\frac{1}{1593} a^{13} - \frac{152}{1593} a^{11} + \frac{202}{1593} a^{10} - \frac{8}{59} a^{9} + \frac{58}{531} a^{8} - \frac{158}{1593} a^{7} - \frac{38}{531} a^{6} + \frac{178}{1593} a^{5} + \frac{158}{1593} a^{4} - \frac{92}{531} a^{3} + \frac{88}{1593} a^{2} - \frac{662}{1593} a + \frac{49}{531}$, $\frac{1}{11062195029} a^{14} - \frac{1800068}{11062195029} a^{13} - \frac{207940}{3687398343} a^{12} - \frac{31098076}{11062195029} a^{11} + \frac{484696927}{3687398343} a^{10} - \frac{370362628}{11062195029} a^{9} - \frac{177573023}{11062195029} a^{8} + \frac{1555676917}{11062195029} a^{7} + \frac{58984978}{3687398343} a^{6} - \frac{1081717069}{3687398343} a^{5} + \frac{26866205}{187494831} a^{4} - \frac{78890621}{187494831} a^{3} - \frac{169054786}{582220791} a^{2} + \frac{88422787}{1229132781} a - \frac{3731162320}{11062195029}$, $\frac{1}{3145683089218357346577275709} a^{15} - \frac{57196735782604}{285971189928941576961570519} a^{14} + \frac{20401159216555069066054}{349520343246484149619697301} a^{13} + \frac{2580148384525443035003}{101473648039301849889589539} a^{12} - \frac{143813100685662707693699485}{1048561029739452448859091903} a^{11} - \frac{182066492821625127352305934}{3145683089218357346577275709} a^{10} + \frac{490172586647415219150755}{285971189928941576961570519} a^{9} - \frac{181304384786819045280504155}{3145683089218357346577275709} a^{8} - \frac{9335353169047791157181329}{1048561029739452448859091903} a^{7} - \frac{108586888410854919699157882}{1048561029739452448859091903} a^{6} + \frac{6924611087009232608969045}{108471830662701977468181921} a^{5} - \frac{965706506462949195854858059}{3145683089218357346577275709} a^{4} - \frac{1311973801835740589079641710}{3145683089218357346577275709} a^{3} + \frac{358052383542341528673080821}{1048561029739452448859091903} a^{2} - \frac{307666045914712185348524248}{3145683089218357346577275709} a - \frac{433713814077858755031389}{1252761086904961109748019}$
Class group and class number
$C_{2}\times C_{2}\times C_{8}\times C_{4080}$, which has order $130560$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16694.393243512957 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |