Normalized defining polynomial
\( x^{16} - 12 x^{14} - 60 x^{13} + 284 x^{12} + 1440 x^{11} + 4442 x^{10} - 2100 x^{9} - 2019 x^{8} + 49800 x^{7} + 700670 x^{6} + 2631000 x^{5} + 8159670 x^{4} + 15805800 x^{3} + 26809700 x^{2} + 26637000 x + 24022900 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47991168245852798976000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2040=2^{3}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2040}(1,·)$, $\chi_{2040}(1157,·)$, $\chi_{2040}(203,·)$, $\chi_{2040}(1871,·)$, $\chi_{2040}(1427,·)$, $\chi_{2040}(409,·)$, $\chi_{2040}(271,·)$, $\chi_{2040}(1121,·)$, $\chi_{2040}(1123,·)$, $\chi_{2040}(679,·)$, $\chi_{2040}(239,·)$, $\chi_{2040}(307,·)$, $\chi_{2040}(1973,·)$, $\chi_{2040}(1529,·)$, $\chi_{2040}(1597,·)$, $\chi_{2040}(373,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{22} a^{10} + \frac{5}{22} a^{9} + \frac{3}{22} a^{8} + \frac{2}{11} a^{7} + \frac{9}{22} a^{6} + \frac{1}{22} a^{5} + \frac{5}{22} a^{4} - \frac{4}{11} a^{3} + \frac{2}{11} a^{2} - \frac{1}{11} a$, $\frac{1}{22} a^{11} - \frac{1}{2} a^{7} + \frac{5}{11} a$, $\frac{1}{110} a^{12} - \frac{1}{55} a^{10} - \frac{1}{11} a^{9} - \frac{3}{55} a^{8} - \frac{3}{11} a^{7} - \frac{9}{55} a^{6} + \frac{2}{11} a^{5} + \frac{1}{110} a^{4} - \frac{5}{11} a^{3} - \frac{2}{11} a^{2} - \frac{4}{11} a$, $\frac{1}{110} a^{13} - \frac{1}{55} a^{11} - \frac{1}{10} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a^{5} + \frac{1}{11} a^{3} - \frac{2}{11} a$, $\frac{1}{43619133910} a^{14} + \frac{13255287}{4361913391} a^{13} + \frac{10151131}{43619133910} a^{12} - \frac{6446107}{8723826782} a^{11} - \frac{36308923}{2295743890} a^{10} - \frac{27071320}{229574389} a^{9} + \frac{453234679}{43619133910} a^{8} + \frac{226446359}{8723826782} a^{7} - \frac{4806352579}{21809566955} a^{6} + \frac{2106543081}{4361913391} a^{5} - \frac{6598908131}{21809566955} a^{4} + \frac{1358453363}{4361913391} a^{3} - \frac{868326141}{4361913391} a^{2} + \frac{2170320498}{4361913391} a - \frac{153212638}{396537581}$, $\frac{1}{5980066284262462985763386590} a^{15} + \frac{21333989273596822}{2990033142131231492881693295} a^{14} + \frac{341164577271223983527098}{2990033142131231492881693295} a^{13} - \frac{9547184898633788479042177}{5980066284262462985763386590} a^{12} + \frac{28429479954253657496129294}{2990033142131231492881693295} a^{11} - \frac{912414863872381602823532}{157370165375327973309562805} a^{10} - \frac{9482507804310862213603043}{2990033142131231492881693295} a^{9} - \frac{607609808029879727910646549}{2990033142131231492881693295} a^{8} + \frac{569813271583462507976898197}{5980066284262462985763386590} a^{7} - \frac{938381991321098070778669562}{2990033142131231492881693295} a^{6} + \frac{111104013339869343827840869}{271821194739202862989244845} a^{5} - \frac{656660405866254581709588079}{5980066284262462985763386590} a^{4} - \frac{260471211952163242130825031}{598006628426246298576338659} a^{3} - \frac{42969859084823350872814988}{598006628426246298576338659} a^{2} + \frac{16596448639293620900135274}{598006628426246298576338659} a + \frac{11569164397377228281875773}{54364238947840572597848969}$
Class group and class number
$C_{2}\times C_{6}\times C_{12}\times C_{816}$, which has order $117504$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54685.79274709562 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.2 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 20$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.2 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 20$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |