Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{14} - 48 x^{13} + 158 x^{12} - 320 x^{11} + 614 x^{10} - 1004 x^{9} + 606 x^{8} + 804 x^{7} - 970 x^{6} - 1328 x^{5} + 3606 x^{4} - 3744 x^{3} + 2362 x^{2} - 884 x + 145 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(479370401182778392576=2^{36}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{10} a^{10} + \frac{1}{10} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{3} - \frac{3}{10} a^{2} + \frac{1}{10} a$, $\frac{1}{10} a^{11} + \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2} - \frac{1}{10} a$, $\frac{1}{50} a^{12} + \frac{1}{50} a^{11} - \frac{1}{25} a^{10} + \frac{1}{10} a^{9} + \frac{3}{25} a^{8} + \frac{12}{25} a^{7} + \frac{7}{25} a^{6} + \frac{4}{25} a^{5} + \frac{7}{50} a^{4} - \frac{11}{50} a^{3} + \frac{11}{25} a^{2} + \frac{1}{50} a + \frac{2}{5}$, $\frac{1}{50} a^{13} + \frac{1}{25} a^{11} + \frac{1}{25} a^{10} + \frac{1}{50} a^{9} - \frac{7}{50} a^{8} + \frac{2}{5} a^{7} + \frac{2}{25} a^{6} - \frac{1}{50} a^{5} + \frac{11}{25} a^{4} - \frac{6}{25} a^{3} + \frac{7}{25} a^{2} + \frac{9}{50} a + \frac{1}{10}$, $\frac{1}{250} a^{14} + \frac{1}{250} a^{13} - \frac{1}{250} a^{12} + \frac{3}{125} a^{11} + \frac{2}{125} a^{10} + \frac{27}{125} a^{9} - \frac{1}{50} a^{8} - \frac{34}{125} a^{7} + \frac{121}{250} a^{6} - \frac{53}{250} a^{5} + \frac{79}{250} a^{4} - \frac{1}{25} a^{3} + \frac{21}{125} a^{2} - \frac{37}{125} a + \frac{19}{50}$, $\frac{1}{1700188250} a^{15} + \frac{1568399}{1700188250} a^{14} + \frac{7666471}{850094125} a^{13} - \frac{12463017}{1700188250} a^{12} + \frac{31058557}{1700188250} a^{11} + \frac{36400811}{1700188250} a^{10} - \frac{364169193}{1700188250} a^{9} + \frac{106115151}{850094125} a^{8} + \frac{228812257}{1700188250} a^{7} + \frac{138247357}{340037650} a^{6} + \frac{46632419}{170018825} a^{5} - \frac{104527853}{1700188250} a^{4} - \frac{126105953}{1700188250} a^{3} - \frac{15658403}{1700188250} a^{2} + \frac{465025673}{1700188250} a - \frac{62504509}{170018825}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4408674}{11645125} a^{15} + \frac{9111867}{11645125} a^{14} - \frac{4828328}{2329025} a^{13} + \frac{64208763}{4658050} a^{12} - \frac{74865746}{2329025} a^{11} + \frac{604385423}{11645125} a^{10} - \frac{1355017396}{11645125} a^{9} + \frac{3042293409}{23290250} a^{8} + \frac{932340278}{11645125} a^{7} - \frac{2427145192}{11645125} a^{6} - \frac{1042613374}{11645125} a^{5} + \frac{10049437483}{23290250} a^{4} - \frac{5397942888}{11645125} a^{3} + \frac{3516821038}{11645125} a^{2} - \frac{1225678104}{11645125} a + \frac{56650863}{4658050} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5908.90081368 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_8$ (as 16T29):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2\times D_8$ |
| Character table for $C_2\times D_8$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{-34}) \), 4.0.272.1, 4.0.4352.2, \(\Q(i, \sqrt{34})\), 8.0.321978368.4, 8.0.20123648.2, 8.0.5473632256.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |