Normalized defining polynomial
\( x^{16} + 532 x^{14} + 96026 x^{12} + 7572336 x^{10} + 295046744 x^{8} + 5823784848 x^{6} + 55702323104 x^{4} + 228831165184 x^{2} + 271737008656 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(478584585616890104119296000000000000=2^{44}\cdot 3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $169.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4560=2^{4}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4560}(1,·)$, $\chi_{4560}(2051,·)$, $\chi_{4560}(3649,·)$, $\chi_{4560}(1673,·)$, $\chi_{4560}(1217,·)$, $\chi_{4560}(4483,·)$, $\chi_{4560}(1369,·)$, $\chi_{4560}(3419,·)$, $\chi_{4560}(2203,·)$, $\chi_{4560}(2281,·)$, $\chi_{4560}(4331,·)$, $\chi_{4560}(3953,·)$, $\chi_{4560}(1139,·)$, $\chi_{4560}(1747,·)$, $\chi_{4560}(3497,·)$, $\chi_{4560}(4027,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{19} a^{2}$, $\frac{1}{19} a^{3}$, $\frac{1}{722} a^{4}$, $\frac{1}{722} a^{5}$, $\frac{1}{13718} a^{6}$, $\frac{1}{13718} a^{7}$, $\frac{1}{521284} a^{8}$, $\frac{1}{521284} a^{9}$, $\frac{1}{9904396} a^{10}$, $\frac{1}{9904396} a^{11}$, $\frac{1}{1129101144} a^{12} + \frac{1}{29713188} a^{10} + \frac{1}{41154} a^{6} + \frac{1}{57} a^{2} - \frac{1}{3}$, $\frac{1}{1129101144} a^{13} + \frac{1}{29713188} a^{11} + \frac{1}{41154} a^{7} + \frac{1}{57} a^{3} - \frac{1}{3} a$, $\frac{1}{665040573816} a^{14} + \frac{1}{5833689244} a^{12} - \frac{13}{460554414} a^{10} + \frac{2}{12119853} a^{8} + \frac{13}{1275774} a^{6} + \frac{23}{67146} a^{4} - \frac{4}{589} a^{2} + \frac{17}{93}$, $\frac{1}{665040573816} a^{15} + \frac{1}{5833689244} a^{13} - \frac{13}{460554414} a^{11} + \frac{2}{12119853} a^{9} + \frac{13}{1275774} a^{7} + \frac{23}{67146} a^{5} - \frac{4}{589} a^{3} + \frac{17}{93} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{26}\times C_{55796}$, which has order $11605568$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16694.393243512957 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| $19$ | 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |