Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{13} + 174 x^{12} - 912 x^{11} + 2260 x^{10} - 2780 x^{9} + 3636 x^{8} - 17008 x^{7} + 40276 x^{6} - 40584 x^{5} + 28872 x^{4} - 45184 x^{3} + 74220 x^{2} - 42872 x + 14278 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(476652309522958914196340736=2^{40}\cdot 3^{12}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{5}{13} a^{11} + \frac{1}{13} a^{10} + \frac{3}{13} a^{8} + \frac{4}{13} a^{7} - \frac{1}{13} a^{6} - \frac{4}{13} a^{5} + \frac{2}{13} a^{4} - \frac{3}{13} a^{3} - \frac{6}{13} a^{2} - \frac{3}{13} a - \frac{1}{13}$, $\frac{1}{13} a^{13} + \frac{2}{13} a^{11} + \frac{5}{13} a^{10} + \frac{3}{13} a^{9} + \frac{6}{13} a^{8} + \frac{6}{13} a^{7} + \frac{4}{13} a^{6} - \frac{5}{13} a^{5} - \frac{6}{13} a^{4} + \frac{5}{13} a^{3} + \frac{6}{13} a^{2} - \frac{3}{13} a - \frac{5}{13}$, $\frac{1}{143} a^{14} + \frac{1}{143} a^{13} - \frac{2}{143} a^{12} + \frac{53}{143} a^{11} - \frac{9}{143} a^{10} - \frac{30}{143} a^{9} + \frac{3}{11} a^{8} - \frac{32}{143} a^{7} + \frac{68}{143} a^{6} - \frac{21}{143} a^{5} - \frac{48}{143} a^{4} + \frac{23}{143} a^{3} - \frac{25}{143} a^{2} + \frac{4}{143} a - \frac{6}{13}$, $\frac{1}{36503515023884296566014144367636863} a^{15} + \frac{127535590651708335849469277346276}{36503515023884296566014144367636863} a^{14} - \frac{642662358676047804363292728796516}{36503515023884296566014144367636863} a^{13} - \frac{410361786511217768060583734612565}{36503515023884296566014144367636863} a^{12} - \frac{3667677201574320507729227941890712}{36503515023884296566014144367636863} a^{11} - \frac{653514866823980450555757370948933}{36503515023884296566014144367636863} a^{10} - \frac{5526220979377682184005590204113191}{36503515023884296566014144367636863} a^{9} - \frac{3607354811647768332286524852411252}{36503515023884296566014144367636863} a^{8} - \frac{4108670002435345489881395863952716}{36503515023884296566014144367636863} a^{7} + \frac{17338915461784068988250538345505054}{36503515023884296566014144367636863} a^{6} + \frac{8707879399512012785922453361930299}{36503515023884296566014144367636863} a^{5} + \frac{18144442094093213355128421615687942}{36503515023884296566014144367636863} a^{4} + \frac{17843267271328202845458870087491520}{36503515023884296566014144367636863} a^{3} + \frac{2467143931128189482941545875490177}{36503515023884296566014144367636863} a^{2} - \frac{5644358449393176475312451436915633}{36503515023884296566014144367636863} a + \frac{526238824538989158603660269819097}{3318501365807663324183104033421533}$
Class group and class number
$C_{2}\times C_{2}\times C_{12}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 242252.826442 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times SD_{16}$ (as 16T48):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2\times SD_{16}$ |
| Character table for $C_2\times SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{78}) \), \(\Q(\sqrt{26}) \), 4.4.29952.1, 4.4.7488.1, \(\Q(\sqrt{3}, \sqrt{26})\), 8.0.419853238272.1, 8.0.104963309568.1, 8.8.606454677504.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |