Normalized defining polynomial
\( x^{16} - 4 x^{15} + 15 x^{14} - 20 x^{13} + 75 x^{12} - 82 x^{11} + 373 x^{10} - 240 x^{9} + 1425 x^{8} - 910 x^{7} + 2563 x^{6} - 2792 x^{5} + 1320 x^{4} - 2830 x^{3} - 10 x^{2} + 296 x + 1181 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(475575744400000000000000=2^{16}\cdot 5^{14}\cdot 29^{4}\cdot 41^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{5} + \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{6} + \frac{1}{5} a$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{7} + \frac{1}{5} a^{2}$, $\frac{1}{55} a^{13} - \frac{2}{55} a^{12} - \frac{1}{11} a^{11} - \frac{3}{55} a^{10} + \frac{1}{11} a^{9} + \frac{1}{55} a^{8} + \frac{13}{55} a^{7} - \frac{13}{55} a^{6} - \frac{2}{55} a^{5} + \frac{2}{11} a^{4} - \frac{3}{11} a^{3} + \frac{4}{11} a^{2} - \frac{23}{55} a - \frac{19}{55}$, $\frac{1}{605} a^{14} + \frac{1}{605} a^{13} + \frac{4}{55} a^{12} - \frac{18}{605} a^{11} - \frac{48}{605} a^{10} - \frac{28}{605} a^{9} + \frac{49}{605} a^{8} + \frac{59}{605} a^{7} - \frac{50}{121} a^{6} - \frac{139}{605} a^{5} - \frac{139}{605} a^{4} - \frac{47}{605} a^{3} + \frac{58}{121} a^{2} + \frac{3}{55} a - \frac{266}{605}$, $\frac{1}{10340053856701135655} a^{15} + \frac{2767956314606509}{10340053856701135655} a^{14} - \frac{34872307319950691}{10340053856701135655} a^{13} + \frac{180398197856388912}{10340053856701135655} a^{12} + \frac{912775968446610826}{10340053856701135655} a^{11} - \frac{143754944265160587}{10340053856701135655} a^{10} - \frac{424649189768977791}{10340053856701135655} a^{9} - \frac{89110477770723249}{2068010771340227131} a^{8} + \frac{4898349721157369349}{10340053856701135655} a^{7} - \frac{514718591475407653}{2068010771340227131} a^{6} - \frac{2538593600211779193}{10340053856701135655} a^{5} - \frac{45928020893946594}{2068010771340227131} a^{4} + \frac{1901250661190588296}{10340053856701135655} a^{3} - \frac{3386210035601909273}{10340053856701135655} a^{2} - \frac{2680265798511932556}{10340053856701135655} a - \frac{790601433888623818}{2068010771340227131}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12061.7171318 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T610):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 4.4.725.1, 4.4.58000.1, 8.8.3364000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||