Normalized defining polynomial
\( x^{16} - 4 x^{15} + 22 x^{14} - 85 x^{13} + 275 x^{12} - 796 x^{11} + 1976 x^{10} - 4323 x^{9} + 8297 x^{8} - 13610 x^{7} + 19093 x^{6} - 22373 x^{5} + 19712 x^{4} - 11605 x^{3} + 4616 x^{2} - 1740 x + 608 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(475262857646065983187681=13^{8}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2}$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{10} - \frac{1}{18} a^{8} - \frac{7}{18} a^{7} - \frac{7}{18} a^{6} - \frac{2}{9} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} + \frac{7}{18} a^{2} - \frac{5}{18} a - \frac{1}{9}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{11} - \frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} + \frac{1}{9} a^{6} - \frac{1}{6} a^{5} - \frac{5}{18} a^{3} + \frac{1}{18} a^{2} + \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{72} a^{14} - \frac{1}{72} a^{13} + \frac{1}{72} a^{12} + \frac{1}{18} a^{11} - \frac{1}{24} a^{10} + \frac{1}{24} a^{9} - \frac{5}{72} a^{8} - \frac{4}{9} a^{7} + \frac{23}{72} a^{6} - \frac{17}{72} a^{5} - \frac{1}{9} a^{4} - \frac{5}{24} a^{3} - \frac{1}{72} a^{2} + \frac{17}{36} a + \frac{1}{9}$, $\frac{1}{287073078852024} a^{15} + \frac{632038131871}{287073078852024} a^{14} + \frac{2849336232877}{287073078852024} a^{13} + \frac{43372592037}{7974252190334} a^{12} - \frac{1540299838319}{31897008761336} a^{11} + \frac{83840980265}{95691026284008} a^{10} - \frac{4359629721529}{287073078852024} a^{9} - \frac{69782984861}{71768269713006} a^{8} - \frac{137131276355461}{287073078852024} a^{7} + \frac{3865922196759}{31897008761336} a^{6} + \frac{234756440551}{7974252190334} a^{5} + \frac{110063358895217}{287073078852024} a^{4} + \frac{94909954859875}{287073078852024} a^{3} + \frac{40280851691231}{143536539426012} a^{2} + \frac{1428361816599}{3987126095167} a + \frac{300465592679}{35884134856503}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 829552.961859 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.3757.1, 4.4.830297.1, 4.0.63869.1, 8.0.40552535777.1, 8.0.239955833.1, 8.0.689393108209.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |