Normalized defining polynomial
\( x^{16} - 19 x^{14} + 167 x^{12} - 862 x^{10} + 2725 x^{8} - 5153 x^{6} + 5747 x^{4} - 4526 x^{2} + 3721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47490403326416015625=3^{12}\cdot 5^{14}\cdot 11^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{62} a^{10} - \frac{1}{62} a^{8} - \frac{6}{31} a^{6} + \frac{23}{62} a^{4} + \frac{4}{31} a^{2} - \frac{1}{2} a + \frac{3}{62}$, $\frac{1}{62} a^{11} - \frac{1}{62} a^{9} - \frac{6}{31} a^{7} + \frac{23}{62} a^{5} + \frac{4}{31} a^{3} - \frac{1}{2} a^{2} + \frac{3}{62} a$, $\frac{1}{62} a^{12} - \frac{13}{62} a^{8} + \frac{11}{62} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{11}{62} a^{2} - \frac{1}{2} a + \frac{3}{62}$, $\frac{1}{62} a^{13} - \frac{13}{62} a^{9} + \frac{11}{62} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{11}{62} a^{3} - \frac{1}{2} a^{2} + \frac{3}{62} a$, $\frac{1}{44660522} a^{14} - \frac{37131}{22330261} a^{12} + \frac{20359}{44660522} a^{10} + \frac{230335}{22330261} a^{8} - \frac{1}{2} a^{7} + \frac{4580049}{22330261} a^{6} - \frac{1}{2} a^{5} - \frac{7573423}{22330261} a^{4} - \frac{9888793}{22330261} a^{2} + \frac{15238169}{44660522}$, $\frac{1}{2724291842} a^{15} + \frac{7166179}{1362145921} a^{13} + \frac{6132993}{1362145921} a^{11} + \frac{381515769}{2724291842} a^{9} + \frac{43015655}{2724291842} a^{7} - \frac{1073313085}{2724291842} a^{5} - \frac{1}{2} a^{4} - \frac{366256797}{2724291842} a^{3} + \frac{538863197}{1362145921} a - \frac{1}{2}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{946118}{1362145921} a^{15} + \frac{5865}{22330261} a^{14} - \frac{16817120}{1362145921} a^{13} - \frac{213081}{44660522} a^{12} + \frac{272295631}{2724291842} a^{11} + \frac{1822171}{44660522} a^{10} - \frac{637110721}{1362145921} a^{9} - \frac{4454017}{22330261} a^{8} + \frac{1754838629}{1362145921} a^{7} + \frac{12493755}{22330261} a^{6} - \frac{2714975788}{1362145921} a^{5} - \frac{18719159}{22330261} a^{4} + \frac{4870610295}{2724291842} a^{3} + \frac{22489003}{44660522} a^{2} - \frac{1408847861}{1362145921} a - \frac{28745541}{44660522} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10344.1260394 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times OD_{16}$ (as 16T15):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_8:C_2)$ |
| Character table for $C_2 \times (C_8:C_2)$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{5})\), \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.6891328125.1, 8.8.6891328125.1, \(\Q(\zeta_{15})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |