Normalized defining polynomial
\( x^{16} - 8 x^{15} + 58 x^{14} - 266 x^{13} + 1023 x^{12} - 3044 x^{11} + 7385 x^{10} - 14408 x^{9} + 21952 x^{8} - 25692 x^{7} + 20601 x^{6} - 8502 x^{5} - 1564 x^{4} + 4240 x^{3} + 11504 x^{2} - 13280 x + 8128 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46968797499063289085893969=13^{12}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} + \frac{1}{16} a^{4} - \frac{3}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{16} a^{5} - \frac{1}{8} a^{4} + \frac{1}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{384} a^{12} - \frac{1}{64} a^{11} - \frac{11}{384} a^{10} + \frac{7}{192} a^{9} + \frac{1}{192} a^{8} + \frac{17}{192} a^{7} + \frac{5}{128} a^{6} - \frac{5}{96} a^{5} - \frac{71}{384} a^{4} + \frac{31}{64} a^{3} - \frac{5}{48} a^{2} - \frac{13}{48} a - \frac{7}{24}$, $\frac{1}{384} a^{13} + \frac{1}{384} a^{11} - \frac{1}{96} a^{10} - \frac{5}{192} a^{9} + \frac{23}{192} a^{8} + \frac{9}{128} a^{7} - \frac{13}{192} a^{6} + \frac{49}{384} a^{5} - \frac{1}{4} a^{4} + \frac{29}{96} a^{3} + \frac{17}{48} a^{2} + \frac{1}{12} a + \frac{1}{4}$, $\frac{1}{66878976} a^{14} - \frac{7}{66878976} a^{13} - \frac{3893}{22292992} a^{12} + \frac{70165}{66878976} a^{11} - \frac{784343}{33439488} a^{10} + \frac{600007}{5573248} a^{9} + \frac{979795}{22292992} a^{8} + \frac{4231011}{22292992} a^{7} + \frac{29293}{22292992} a^{6} - \frac{15221015}{66878976} a^{5} - \frac{3916715}{16719744} a^{4} - \frac{2345617}{16719744} a^{3} + \frac{3092545}{8359872} a^{2} - \frac{15313}{174164} a + \frac{170363}{2089968}$, $\frac{1}{1175665519104} a^{15} + \frac{4391}{587832759552} a^{14} + \frac{126667709}{587832759552} a^{13} - \frac{36486353}{195944253184} a^{12} - \frac{1330126217}{1175665519104} a^{11} - \frac{2596457827}{195944253184} a^{10} - \frac{50572450715}{1175665519104} a^{9} - \frac{26716774993}{587832759552} a^{8} + \frac{9880189621}{146958189888} a^{7} + \frac{46051805917}{293916379776} a^{6} + \frac{197777294717}{1175665519104} a^{5} - \frac{2516340363}{24493031648} a^{4} + \frac{43927728819}{97972126592} a^{3} - \frac{31752055535}{146958189888} a^{2} + \frac{4192819965}{12246515824} a - \frac{2886583303}{12246515824}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7162693.22826 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{221}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{17}) \), 4.0.3757.1 x2, 4.0.2873.1 x2, \(\Q(\sqrt{13}, \sqrt{17})\), 8.0.2385443281.2, 8.0.403139914489.2 x2, 8.4.6853378546313.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |