Properties

Label 16.0.46936794102...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{8}\cdot 13^{4}\cdot 29^{10}$
Root discriminant $34.83$
Ramified primes $5, 13, 29$
Class number $68$ (GRH)
Class group $[2, 34]$ (GRH)
Galois group $D_4.D_4$ (as 16T175)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![12251, -4768, 15289, -5098, 9765, -6585, 7596, -5009, 3659, -1834, 1026, -395, 180, -53, 19, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 19*x^14 - 53*x^13 + 180*x^12 - 395*x^11 + 1026*x^10 - 1834*x^9 + 3659*x^8 - 5009*x^7 + 7596*x^6 - 6585*x^5 + 9765*x^4 - 5098*x^3 + 15289*x^2 - 4768*x + 12251)
 
gp: K = bnfinit(x^16 - 3*x^15 + 19*x^14 - 53*x^13 + 180*x^12 - 395*x^11 + 1026*x^10 - 1834*x^9 + 3659*x^8 - 5009*x^7 + 7596*x^6 - 6585*x^5 + 9765*x^4 - 5098*x^3 + 15289*x^2 - 4768*x + 12251, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} + 19 x^{14} - 53 x^{13} + 180 x^{12} - 395 x^{11} + 1026 x^{10} - 1834 x^{9} + 3659 x^{8} - 5009 x^{7} + 7596 x^{6} - 6585 x^{5} + 9765 x^{4} - 5098 x^{3} + 15289 x^{2} - 4768 x + 12251 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4693679410268375297265625=5^{8}\cdot 13^{4}\cdot 29^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1945} a^{14} + \frac{115}{389} a^{13} - \frac{419}{1945} a^{12} + \frac{156}{389} a^{11} + \frac{902}{1945} a^{10} + \frac{871}{1945} a^{9} - \frac{272}{1945} a^{8} - \frac{393}{1945} a^{7} + \frac{161}{1945} a^{6} + \frac{518}{1945} a^{5} - \frac{263}{1945} a^{4} + \frac{112}{1945} a^{3} + \frac{156}{389} a^{2} + \frac{116}{1945} a - \frac{128}{1945}$, $\frac{1}{466509251658034078721496055} a^{15} - \frac{86224737038176776119006}{466509251658034078721496055} a^{14} + \frac{4850255543174138134852812}{20283010941653655596586785} a^{13} + \frac{95951252943908171789682959}{466509251658034078721496055} a^{12} + \frac{160608944143546574849927377}{466509251658034078721496055} a^{11} + \frac{209829693945812263576705644}{466509251658034078721496055} a^{10} + \frac{98448880748904575978780607}{466509251658034078721496055} a^{9} - \frac{108752445587351565573847626}{466509251658034078721496055} a^{8} + \frac{182233222259180431996487439}{466509251658034078721496055} a^{7} + \frac{231598962451487627104013042}{466509251658034078721496055} a^{6} + \frac{34210052070043492466416594}{466509251658034078721496055} a^{5} - \frac{2716518207690046072269034}{93301850331606815744299211} a^{4} + \frac{59403922604745662196198203}{466509251658034078721496055} a^{3} - \frac{230911718906803656019992194}{466509251658034078721496055} a^{2} - \frac{192583369478448736260641479}{466509251658034078721496055} a - \frac{129668631752885976707037937}{466509251658034078721496055}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{34}$, which has order $68$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3793.72993285 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4.D_4$ (as 16T175):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 16 conjugacy class representatives for $D_4.D_4$
Character table for $D_4.D_4$

Intermediate fields

\(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.2.2$x^{4} - 13 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
13.4.2.2$x^{4} - 13 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$29$29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
29.8.6.2$x^{8} + 145 x^{4} + 7569$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$