Normalized defining polynomial
\( x^{16} - 5 x^{15} - 12 x^{14} + 171 x^{13} - 123 x^{12} - 2068 x^{11} + 3340 x^{10} + 13003 x^{9} - 22030 x^{8} - 79804 x^{7} + 142619 x^{6} + 372630 x^{5} - 1015471 x^{4} - 69749 x^{3} + 2505865 x^{2} - 2986939 x + 1181299 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46930925056608955875626433=3^{8}\cdot 97^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} + \frac{2}{7} a^{12} + \frac{1}{7} a^{10} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} - \frac{3}{7} a^{5} + \frac{2}{7} a^{4} + \frac{3}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{7} a^{14} + \frac{3}{7} a^{12} + \frac{1}{7} a^{11} - \frac{2}{7} a^{10} + \frac{2}{7} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{62253137325057693917813022659804226124421} a^{15} - \frac{88944184117340230519694269264045776553}{1270472190307299875873735156322535227029} a^{14} - \frac{364095984198930960255994093130251741239}{62253137325057693917813022659804226124421} a^{13} - \frac{1787350141228446039186655349267013145513}{62253137325057693917813022659804226124421} a^{12} + \frac{27099379789093571312001496475119871721263}{62253137325057693917813022659804226124421} a^{11} + \frac{23852726136291167206256212888468262240936}{62253137325057693917813022659804226124421} a^{10} - \frac{4961900436572170881074432873073769735469}{62253137325057693917813022659804226124421} a^{9} + \frac{22636336756788348647150050604306277984578}{62253137325057693917813022659804226124421} a^{8} - \frac{20602407184093246145284163202128224113964}{62253137325057693917813022659804226124421} a^{7} - \frac{19106678807858405107414205413094294081141}{62253137325057693917813022659804226124421} a^{6} - \frac{4395790984117199448938194972275291917220}{62253137325057693917813022659804226124421} a^{5} - \frac{1570792767312574448709235579560120746523}{62253137325057693917813022659804226124421} a^{4} + \frac{13159542126540920138042940452579002058}{62253137325057693917813022659804226124421} a^{3} + \frac{150422101538465168823629315951541299696}{1270472190307299875873735156322535227029} a^{2} + \frac{5123399141325311340822501155922318596649}{62253137325057693917813022659804226124421} a + \frac{52990740992452801074329238587461294942}{240359603571651327868003948493452610519}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{7590649459071325128672}{321860129163246490862993027} a^{15} + \frac{29842295251021789444615}{321860129163246490862993027} a^{14} + \frac{103828837829282713560499}{321860129163246490862993027} a^{13} - \frac{1069006388665281795102281}{321860129163246490862993027} a^{12} - \frac{171195161344480173746624}{321860129163246490862993027} a^{11} + \frac{12530662820494138171575890}{321860129163246490862993027} a^{10} - \frac{6026580505030282324056920}{321860129163246490862993027} a^{9} - \frac{80905853894158716587059182}{321860129163246490862993027} a^{8} + \frac{5348197197574172274243950}{321860129163246490862993027} a^{7} + \frac{517551518856638408998154006}{321860129163246490862993027} a^{6} - \frac{211420026560190033894185174}{321860129163246490862993027} a^{5} - \frac{2144061830656040599284832760}{321860129163246490862993027} a^{4} + \frac{2513962889959976928596781359}{321860129163246490862993027} a^{3} + \frac{1888793536028869172257108209}{321860129163246490862993027} a^{2} - \frac{4260763862398426437908028467}{321860129163246490862993027} a + \frac{1893210192121737394159310470}{321860129163246490862993027} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5787832.84764 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.873.1, 8.0.73926513.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $97$ | 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 97.8.7.6 | $x^{8} + 12125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |