Normalized defining polynomial
\( x^{16} + 1712 x^{14} + 1233350 x^{12} + 488006872 x^{10} + 115758148212 x^{8} + 16792514721616 x^{6} + 1446242915789840 x^{4} + 67056318133293792 x^{2} + 1270028532190841476 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46871787785697452696878168826792882590449664=2^{48}\cdot 23^{6}\cdot 37^{4}\cdot 24499031^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $536.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 37, 24499031$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{7374932726364029598563199270129651156487916928556} a^{14} - \frac{63457689815794013425175238260905646527106394031}{3687466363182014799281599635064825578243958464278} a^{12} - \frac{555596128209112045302163822035825844751011917791}{3687466363182014799281599635064825578243958464278} a^{10} + \frac{627483262069513862473047167401313307616455843833}{3687466363182014799281599635064825578243958464278} a^{8} + \frac{581897061429310749528311940746658898217946974539}{3687466363182014799281599635064825578243958464278} a^{6} + \frac{627250076595810715190492988811433320374526506857}{1843733181591007399640799817532412789121979232139} a^{4} - \frac{529661144837213304683093670395619921392201174873}{1843733181591007399640799817532412789121979232139} a^{2} + \frac{202403958646391967170058861182124648007}{3272060525295358752974848922786787823003}$, $\frac{1}{7374932726364029598563199270129651156487916928556} a^{15} - \frac{63457689815794013425175238260905646527106394031}{3687466363182014799281599635064825578243958464278} a^{13} - \frac{555596128209112045302163822035825844751011917791}{3687466363182014799281599635064825578243958464278} a^{11} + \frac{627483262069513862473047167401313307616455843833}{3687466363182014799281599635064825578243958464278} a^{9} + \frac{581897061429310749528311940746658898217946974539}{3687466363182014799281599635064825578243958464278} a^{7} + \frac{627250076595810715190492988811433320374526506857}{1843733181591007399640799817532412789121979232139} a^{5} - \frac{529661144837213304683093670395619921392201174873}{1843733181591007399640799817532412789121979232139} a^{3} + \frac{202403958646391967170058861182124648007}{3272060525295358752974848922786787823003} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2723433000}$, which has order $21787464000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 109226.925145 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12288 |
| The 74 conjugacy class representatives for t16n1765 are not computed |
| Character table for t16n1765 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 8.8.47461236736.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $37$ | 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 24499031 | Data not computed | ||||||