Normalized defining polynomial
\( x^{16} - 30 x^{14} - 100 x^{13} + 617 x^{12} + 2320 x^{11} - 5340 x^{10} - 34100 x^{9} + 27644 x^{8} + 298520 x^{7} - 67990 x^{6} - 1774300 x^{5} + 524223 x^{4} + 5803680 x^{3} - 2476140 x^{2} - 10705860 x + 9235031 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(468135157405057024000000000000=2^{38}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{6}$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{6} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{4} + \frac{1}{12} a^{2} - \frac{1}{4}$, $\frac{1}{1580446873263647389827869351352696} a^{15} + \frac{15085764131210628333863029248699}{526815624421215796609289783784232} a^{14} + \frac{31873882167861892657729996574093}{526815624421215796609289783784232} a^{13} - \frac{18893787007511706287746342836049}{1580446873263647389827869351352696} a^{12} + \frac{24090868022275381522844217075025}{65851953052651974576161222973029} a^{11} + \frac{98205884510484362951764852982993}{197555859157955923728483668919087} a^{10} + \frac{83854776165430433897918732321429}{395111718315911847456967337838174} a^{9} + \frac{12226674732895122026371142672929}{65851953052651974576161222973029} a^{8} + \frac{12929615322589813270358011866733}{131703906105303949152322445946058} a^{7} - \frac{144493606203160599560045193311933}{395111718315911847456967337838174} a^{6} - \frac{86576332520879466011695214369539}{263407812210607898304644891892116} a^{5} + \frac{126020605075120993367888019805075}{263407812210607898304644891892116} a^{4} - \frac{720176518878632912274346039279231}{1580446873263647389827869351352696} a^{3} + \frac{50706506095015527542695313528787}{526815624421215796609289783784232} a^{2} - \frac{313949440657629336327845731085519}{1580446873263647389827869351352696} a + \frac{8819483289607316192303896173}{573248775213510116005756021528}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85271111.0063 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4):C_4$ (as 16T120):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times D_4):C_4$ |
| Character table for $(C_2\times D_4):C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{170}) \), 4.0.2312.1, 4.0.57800.1, \(\Q(\sqrt{10}, \sqrt{17})\), 8.0.213813760000.23 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.10 | $x^{4} + 8 x + 6$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.8 | $x^{4} + 4 x^{2} + 10$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| 5 | Data not computed | ||||||
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |