Normalized defining polynomial
\( x^{16} - 2 x^{15} - 6 x^{14} + 23 x^{13} + 27 x^{12} + 92 x^{11} - 631 x^{10} - 16 x^{9} + 5379 x^{8} - 5379 x^{7} + 2152 x^{6} + 1155 x^{5} - 2314 x^{4} + 605 x^{3} + 775 x^{2} - 1125 x + 625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46803543212226806640625=5^{12}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{10} a^{10} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{6} + \frac{3}{10} a$, $\frac{1}{30} a^{12} - \frac{1}{30} a^{10} + \frac{1}{15} a^{9} + \frac{1}{3} a^{8} + \frac{1}{10} a^{7} - \frac{1}{5} a^{6} - \frac{7}{30} a^{5} - \frac{2}{5} a^{4} + \frac{2}{15} a^{3} + \frac{13}{30} a^{2} + \frac{4}{15} a - \frac{1}{6}$, $\frac{1}{4333770150} a^{13} - \frac{823}{1828595} a^{12} - \frac{89184623}{2166885075} a^{11} + \frac{373949}{54857850} a^{10} - \frac{125685583}{2166885075} a^{9} + \frac{75796039}{288918010} a^{8} - \frac{311701166}{722295025} a^{7} - \frac{483642854}{2166885075} a^{6} + \frac{246643721}{1444590050} a^{5} - \frac{600957859}{2166885075} a^{4} - \frac{6776651}{54857850} a^{3} + \frac{610002946}{2166885075} a^{2} - \frac{166997}{5485785} a + \frac{17579801}{57783602}$, $\frac{1}{4333770150} a^{14} - \frac{50814661}{4333770150} a^{12} + \frac{1258072}{27428925} a^{11} - \frac{74715178}{2166885075} a^{10} + \frac{114881}{1992538} a^{9} + \frac{42605934}{722295025} a^{8} + \frac{2032912697}{4333770150} a^{7} - \frac{328749122}{722295025} a^{6} + \frac{563967056}{2166885075} a^{5} - \frac{6754421}{54857850} a^{4} - \frac{823855349}{2166885075} a^{3} - \frac{4873639}{10971570} a^{2} - \frac{53551626}{144459005} a - \frac{131321}{365719}$, $\frac{1}{21668850750} a^{15} - \frac{1}{10834425375} a^{14} - \frac{1}{21668850750} a^{13} - \frac{156446377}{21668850750} a^{12} - \frac{44168701}{7222950250} a^{11} - \frac{156031913}{3611475125} a^{10} + \frac{569222632}{10834425375} a^{9} + \frac{432917303}{7222950250} a^{8} - \frac{2282293801}{21668850750} a^{7} - \frac{7829009069}{21668850750} a^{6} + \frac{1324829246}{10834425375} a^{5} - \frac{16816622}{722295025} a^{4} - \frac{7263674759}{21668850750} a^{3} + \frac{508698703}{4333770150} a^{2} + \frac{289816733}{866754030} a + \frac{34318253}{173350806}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3043353}{7222950250} a^{15} + \frac{223639}{249067250} a^{14} + \frac{9130059}{3611475125} a^{13} - \frac{69997119}{7222950250} a^{12} - \frac{82170531}{7222950250} a^{11} - \frac{139994238}{3611475125} a^{10} + \frac{2045409043}{7222950250} a^{9} + \frac{24346824}{3611475125} a^{8} - \frac{16370195787}{7222950250} a^{7} + \frac{16370195787}{7222950250} a^{6} - \frac{3274647828}{3611475125} a^{5} + \frac{2645530927}{1444590050} a^{4} + \frac{3521159421}{3611475125} a^{3} - \frac{368245713}{1444590050} a^{2} - \frac{94343943}{288918010} a + \frac{27390177}{57783602} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 160289.989776 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |