Normalized defining polynomial
\( x^{16} - 7 x^{15} + 96 x^{14} + 91 x^{13} + 2772 x^{12} + 129667 x^{11} - 310036 x^{10} + 576733 x^{9} - 5430577 x^{8} - 152310452 x^{7} + 3090172208 x^{6} + 409621632 x^{5} - 96715161760 x^{4} + 166203665088 x^{3} - 59137532864 x^{2} + 3645586489344 x + 106045326871552 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(462732306245995722656474121747020143758680081=29^{14}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $618.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{1}{16} a^{7} + \frac{3}{32} a^{6} - \frac{5}{32} a^{5} - \frac{5}{32} a^{4} + \frac{1}{4} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{8} + \frac{1}{32} a^{7} - \frac{1}{16} a^{6} + \frac{3}{16} a^{5} - \frac{5}{32} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{9} + \frac{1}{64} a^{8} - \frac{1}{32} a^{7} + \frac{3}{32} a^{6} + \frac{11}{64} a^{5} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{13} - \frac{1}{128} a^{11} - \frac{3}{256} a^{10} + \frac{3}{256} a^{9} - \frac{1}{128} a^{8} - \frac{3}{32} a^{7} + \frac{9}{256} a^{6} - \frac{1}{128} a^{5} + \frac{11}{64} a^{4} + \frac{3}{32} a^{3} + \frac{7}{16} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{42496} a^{14} + \frac{1}{2656} a^{13} + \frac{31}{21248} a^{12} + \frac{397}{42496} a^{11} + \frac{259}{42496} a^{10} - \frac{33}{21248} a^{9} - \frac{167}{5312} a^{8} - \frac{3815}{42496} a^{7} - \frac{1953}{21248} a^{6} - \frac{2129}{10624} a^{5} + \frac{631}{5312} a^{4} - \frac{1217}{2656} a^{3} - \frac{57}{1328} a^{2} + \frac{11}{332} a + \frac{15}{83}$, $\frac{1}{185439383371689668992192314149241249148950325854506670841163521593229713928830464} a^{15} + \frac{75185281066047901430433462306014876414603676093751988620658453595572061}{11996337389810432720416115548534173188572281398273170581004238685032327204608} a^{14} - \frac{16768324717392381453764869830627096467106158826132072940341523631771158448907}{23179922921461208624024039268655156143618790731813333855145440199153714241103808} a^{13} + \frac{978263215920264487131534053707096576465493925159169569692152035270828424988153}{185439383371689668992192314149241249148950325854506670841163521593229713928830464} a^{12} - \frac{2456712196914064324207458017166564485633343823732816616619790338061594847742175}{185439383371689668992192314149241249148950325854506670841163521593229713928830464} a^{11} + \frac{204763768564060105052383746200660813264127176309412588877175287929470156211679}{92719691685844834496096157074620624574475162927253335420581760796614856964415232} a^{10} - \frac{36327576303825580801569960525217085369792855098749500654218631679711729687141}{667048141624782981986303288306623198377519157750023995831523458968452208377088} a^{9} - \frac{1740550021395369020502777250580149667307672808395644942456036592615353604704283}{185439383371689668992192314149241249148950325854506670841163521593229713928830464} a^{8} + \frac{2360282513747756743736718860987036969779184790658037110220617675615862929440783}{23179922921461208624024039268655156143618790731813333855145440199153714241103808} a^{7} + \frac{7539731730694065960966883646051285896234094017679201639239351852897310096122961}{92719691685844834496096157074620624574475162927253335420581760796614856964415232} a^{6} - \frac{7176155105599101490326383180711536174385631740713410148501888707737983660700585}{46359845842922417248048078537310312287237581463626667710290880398307428482207616} a^{5} - \frac{3514558090304022124609452645459204308518129033362090174374352562574962196897227}{23179922921461208624024039268655156143618790731813333855145440199153714241103808} a^{4} - \frac{2229414973943189936734970279964073918650422010753248672623527680109484120659197}{11589961460730604312012019634327578071809395365906666927572720099576857120551904} a^{3} + \frac{355392874290803703132637389127591770465544520892592475178505614540735630830409}{5794980730365302156006009817163789035904697682953333463786360049788428560275952} a^{2} + \frac{236532812359296051931925351051131368625621165438737830980229839314601897786269}{2897490365182651078003004908581894517952348841476666731893180024894214280137976} a - \frac{22818456150029138843268218952803312565115226363638851830151999894729910633811}{724372591295662769500751227145473629488087210369166682973295006223553570034494}$
Class group and class number
$C_{13506148}$, which has order $13506148$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 276024556298 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.57962561.1, 8.8.115844383968839978801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| 41 | Data not computed | ||||||