Normalized defining polynomial
\( x^{16} - 8 x^{15} + 40 x^{14} - 136 x^{13} + 356 x^{12} - 728 x^{11} + 1208 x^{10} - 1624 x^{9} + 1800 x^{8} - 1624 x^{7} + 1192 x^{6} - 696 x^{5} + 312 x^{4} - 104 x^{3} + 24 x^{2} - 8 x + 5 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4611686018427387904=2^{62}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31} a^{14} - \frac{10}{31} a^{13} + \frac{4}{31} a^{12} + \frac{13}{31} a^{11} + \frac{13}{31} a^{10} + \frac{6}{31} a^{9} + \frac{3}{31} a^{8} - \frac{13}{31} a^{7} + \frac{15}{31} a^{6} + \frac{4}{31} a^{5} + \frac{3}{31} a^{4} + \frac{4}{31} a^{3} + \frac{12}{31} a^{2} - \frac{11}{31} a - \frac{6}{31}$, $\frac{1}{397122679} a^{15} - \frac{4976387}{397122679} a^{14} + \frac{60898044}{397122679} a^{13} + \frac{63131353}{397122679} a^{12} - \frac{20117089}{397122679} a^{11} - \frac{12596837}{397122679} a^{10} + \frac{13178514}{397122679} a^{9} - \frac{172093781}{397122679} a^{8} + \frac{19786316}{397122679} a^{7} - \frac{9099003}{397122679} a^{6} - \frac{160668476}{397122679} a^{5} + \frac{66386105}{397122679} a^{4} - \frac{97432218}{397122679} a^{3} + \frac{36207416}{397122679} a^{2} + \frac{772851}{12810409} a - \frac{122419039}{397122679}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1260092}{9685919} a^{15} - \frac{8992308}{9685919} a^{14} + \frac{42348236}{9685919} a^{13} - \frac{133470344}{9685919} a^{12} + \frac{329339492}{9685919} a^{11} - \frac{629351036}{9685919} a^{10} + \frac{989216244}{9685919} a^{9} - \frac{1253769647}{9685919} a^{8} + \frac{1336693868}{9685919} a^{7} - \frac{1149688844}{9685919} a^{6} + \frac{820970636}{9685919} a^{5} - \frac{458895758}{9685919} a^{4} + \frac{205357172}{9685919} a^{3} - \frac{68834116}{9685919} a^{2} + \frac{790348}{312449} a - \frac{9034238}{9685919} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2661.0561913 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.SD_{16}$ (as 16T163):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $C_2^2.SD_{16}$ |
| Character table for $C_2^2.SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.512.1, 8.0.134217728.2, 8.0.134217728.1, 8.0.67108864.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||