Properties

Label 16.0.46044254676...5749.2
Degree $16$
Signature $[0, 8]$
Discriminant $13^{14}\cdot 61^{9}$
Root discriminant $95.27$
Ramified primes $13, 61$
Class number $16$ (GRH)
Class group $[2, 2, 4]$ (GRH)
Galois group 16T1281

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![143762193, 59364288, 10220890, -8663345, -511662, -1973002, 719684, -61895, -9447, -1671, -367, 642, 652, -190, -9, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 9*x^14 - 190*x^13 + 652*x^12 + 642*x^11 - 367*x^10 - 1671*x^9 - 9447*x^8 - 61895*x^7 + 719684*x^6 - 1973002*x^5 - 511662*x^4 - 8663345*x^3 + 10220890*x^2 + 59364288*x + 143762193)
 
gp: K = bnfinit(x^16 - x^15 - 9*x^14 - 190*x^13 + 652*x^12 + 642*x^11 - 367*x^10 - 1671*x^9 - 9447*x^8 - 61895*x^7 + 719684*x^6 - 1973002*x^5 - 511662*x^4 - 8663345*x^3 + 10220890*x^2 + 59364288*x + 143762193, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 9 x^{14} - 190 x^{13} + 652 x^{12} + 642 x^{11} - 367 x^{10} - 1671 x^{9} - 9447 x^{8} - 61895 x^{7} + 719684 x^{6} - 1973002 x^{5} - 511662 x^{4} - 8663345 x^{3} + 10220890 x^{2} + 59364288 x + 143762193 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(46044254676842752222272178625749=13^{14}\cdot 61^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $95.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{27} a^{14} + \frac{4}{27} a^{13} - \frac{2}{27} a^{12} + \frac{1}{9} a^{10} + \frac{1}{3} a^{9} - \frac{1}{27} a^{8} - \frac{11}{27} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{2}{27} a^{4} + \frac{2}{9} a^{3} - \frac{8}{27} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{789841423942840108625820024676968410817311876659855167} a^{15} - \frac{1236274921726437167029814159799570828633812499515386}{263280474647613369541940008225656136939103958886618389} a^{14} - \frac{12099411669063310350131407951384032631995441336222322}{263280474647613369541940008225656136939103958886618389} a^{13} + \frac{106938506452847615834820923263448648031522935143447193}{789841423942840108625820024676968410817311876659855167} a^{12} + \frac{2252179876099686551263009628736780705949983906900277}{263280474647613369541940008225656136939103958886618389} a^{11} + \frac{2423090998684092745406302937814533646787710309977564}{263280474647613369541940008225656136939103958886618389} a^{10} - \frac{311928187822937086223802116934335979349924659567767740}{789841423942840108625820024676968410817311876659855167} a^{9} - \frac{83018845524427391003903497078739307544791860415513985}{789841423942840108625820024676968410817311876659855167} a^{8} + \frac{56327072174990864742454224770430559807014394935415163}{789841423942840108625820024676968410817311876659855167} a^{7} - \frac{121525726314844930720824642238207976938337254414529567}{263280474647613369541940008225656136939103958886618389} a^{6} - \frac{109630593319942361756813766129013515585381782065207033}{789841423942840108625820024676968410817311876659855167} a^{5} - \frac{335333213570819915484813266323015414568065501969354502}{789841423942840108625820024676968410817311876659855167} a^{4} - \frac{85055636987929769274143346452490962925799320623365529}{789841423942840108625820024676968410817311876659855167} a^{3} + \frac{250332883430449815885897743123806659190999143860297168}{789841423942840108625820024676968410817311876659855167} a^{2} + \frac{11200568109781843426233932425221173012608977713801117}{29253386071957041060215556469517348548789328765179821} a + \frac{23564335221112732196055714479651296711607835735521344}{87760158215871123180646669408552045646367986295539463}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 298222858.42 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1281:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 34 conjugacy class representatives for t16n1281
Character table for t16n1281 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.17960556289.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.8.7.2$x^{8} - 52$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
13.8.7.2$x^{8} - 52$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$61$61.4.2.2$x^{4} - 61 x^{2} + 7442$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
61.4.3.3$x^{4} + 122$$4$$1$$3$$C_4$$[\ ]_{4}$
61.4.2.1$x^{4} + 183 x^{2} + 14884$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
61.4.2.1$x^{4} + 183 x^{2} + 14884$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$