Properties

Label 16.0.45905397709...6736.9
Degree $16$
Signature $[0, 8]$
Discriminant $2^{64}\cdot 3^{8}\cdot 41^{14}$
Root discriminant $714.28$
Ramified primes $2, 3, 41$
Class number $1214660608$ (GRH)
Class group $[2, 2, 2, 2, 4, 4, 28, 169456]$ (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![161476189281, 0, 284382596736, 0, 140306830128, 0, 16786170144, 0, 793516132, 0, 16296352, 0, 155144, 0, 656, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 656*x^14 + 155144*x^12 + 16296352*x^10 + 793516132*x^8 + 16786170144*x^6 + 140306830128*x^4 + 284382596736*x^2 + 161476189281)
 
gp: K = bnfinit(x^16 + 656*x^14 + 155144*x^12 + 16296352*x^10 + 793516132*x^8 + 16786170144*x^6 + 140306830128*x^4 + 284382596736*x^2 + 161476189281, 1)
 

Normalized defining polynomial

\( x^{16} + 656 x^{14} + 155144 x^{12} + 16296352 x^{10} + 793516132 x^{8} + 16786170144 x^{6} + 140306830128 x^{4} + 284382596736 x^{2} + 161476189281 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4590539770923916035789355095649376383046516736=2^{64}\cdot 3^{8}\cdot 41^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $714.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3936=2^{5}\cdot 3\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{3936}(1,·)$, $\chi_{3936}(2627,·)$, $\chi_{3936}(1093,·)$, $\chi_{3936}(647,·)$, $\chi_{3936}(3277,·)$, $\chi_{3936}(3863,·)$, $\chi_{3936}(2651,·)$, $\chi_{3936}(3037,·)$, $\chi_{3936}(1321,·)$, $\chi_{3936}(875,·)$, $\chi_{3936}(1967,·)$, $\chi_{3936}(1393,·)$, $\chi_{3936}(2867,·)$, $\chi_{3936}(3253,·)$, $\chi_{3936}(2041,·)$, $\chi_{3936}(575,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{41} a^{8}$, $\frac{1}{1353} a^{9} - \frac{5}{33} a^{7} + \frac{13}{33} a^{5} + \frac{8}{33} a^{3} - \frac{1}{33} a$, $\frac{1}{4059} a^{10} + \frac{26}{4059} a^{8} + \frac{13}{99} a^{6} + \frac{41}{99} a^{4} - \frac{34}{99} a^{2}$, $\frac{1}{12177} a^{11} - \frac{1}{12177} a^{9} + \frac{49}{297} a^{7} - \frac{112}{297} a^{5} - \frac{52}{297} a^{3} + \frac{1}{11} a$, $\frac{1}{2666763} a^{12} - \frac{190}{2666763} a^{10} + \frac{26795}{2666763} a^{8} - \frac{15934}{65043} a^{6} - \frac{18493}{65043} a^{4} + \frac{10}{803} a^{2} - \frac{5}{73}$, $\frac{1}{88003179} a^{13} - \frac{3475}{88003179} a^{11} + \frac{18254}{88003179} a^{9} - \frac{703156}{2146419} a^{7} - \frac{714913}{2146419} a^{5} - \frac{3821}{21681} a^{3} - \frac{1807}{26499} a$, $\frac{1}{5276199310282569120024871881} a^{14} + \frac{447482981213267449517}{5276199310282569120024871881} a^{12} + \frac{218795583695803308819938}{5276199310282569120024871881} a^{10} + \frac{43340268601987243897115653}{5276199310282569120024871881} a^{8} + \frac{51049249381244600871757679}{128687788055672417561582241} a^{6} + \frac{275804394993047018100859}{1299876647026994116783659} a^{4} - \frac{174943094413203599495662}{529579374714701306837787} a^{2} + \frac{45709020136502300343}{132626940825119285459}$, $\frac{1}{15828597930847707360074615643} a^{15} + \frac{87755114317738428683}{15828597930847707360074615643} a^{13} + \frac{168973274130772539434429}{15828597930847707360074615643} a^{11} + \frac{2977003296974410114436683}{15828597930847707360074615643} a^{9} + \frac{158407872889013863965539975}{386063364167017252684746723} a^{7} - \frac{264563182113703032806182}{3899629941080982350350977} a^{5} - \frac{1476709188808168979727176}{4766214372432311761540083} a^{3} - \frac{6666328756204800823471}{16047859839839433540539} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{28}\times C_{169456}$, which has order $1214660608$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 55505673.28953015 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_8$ (as 16T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{82}) \), \(\Q(\sqrt{246}) \), \(\Q(\sqrt{3}, \sqrt{82})\), 4.4.141150208.2, 4.4.1270351872.2, 8.8.6455175514775617536.2, 8.0.33876761101542440828928.1, 8.0.418231618537560997888.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
41Data not computed