Normalized defining polynomial
\( x^{16} + 656 x^{14} + 144648 x^{12} + 12664736 x^{10} + 405682372 x^{8} + 5736432672 x^{6} + 36798327216 x^{4} + 89879331456 x^{2} + 16775171361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4590539770923916035789355095649376383046516736=2^{64}\cdot 3^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $714.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3936=2^{5}\cdot 3\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3936}(1,·)$, $\chi_{3936}(1667,·)$, $\chi_{3936}(2053,·)$, $\chi_{3936}(73,·)$, $\chi_{3936}(3851,·)$, $\chi_{3936}(3289,·)$, $\chi_{3936}(3611,·)$, $\chi_{3936}(2077,·)$, $\chi_{3936}(1895,·)$, $\chi_{3936}(301,·)$, $\chi_{3936}(1967,·)$, $\chi_{3936}(1393,·)$, $\chi_{3936}(3827,·)$, $\chi_{3936}(2293,·)$, $\chi_{3936}(2615,·)$, $\chi_{3936}(575,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{4}{9} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} - \frac{2}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{369} a^{8} - \frac{1}{3} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{14391} a^{9} + \frac{2}{39} a^{7} + \frac{14}{117} a^{5} + \frac{145}{351} a^{3} - \frac{2}{13} a$, $\frac{1}{14391} a^{10} - \frac{1}{4797} a^{8} + \frac{1}{117} a^{6} + \frac{106}{351} a^{4} - \frac{44}{117} a^{2}$, $\frac{1}{14391} a^{11} + \frac{2}{39} a^{7} - \frac{41}{351} a^{5} + \frac{49}{117} a^{3} + \frac{8}{39} a$, $\frac{1}{388557} a^{12} - \frac{10}{388557} a^{10} - \frac{4}{4797} a^{8} + \frac{124}{9477} a^{6} + \frac{3494}{9477} a^{4} - \frac{140}{1053} a^{2} - \frac{1}{3}$, $\frac{1}{1165671} a^{13} - \frac{10}{1165671} a^{11} - \frac{1415}{28431} a^{7} - \frac{2905}{28431} a^{5} - \frac{1004}{3159} a^{3} - \frac{46}{117} a$, $\frac{1}{59694762354779165000445981} a^{14} + \frac{678411517623237313}{1455969813531199146352341} a^{12} + \frac{163467327075372115106}{6632751372753240555605109} a^{10} - \frac{644259033430849314398}{1455969813531199146352341} a^{8} - \frac{6302437149301274588866}{1455969813531199146352341} a^{6} - \frac{25372438669293594813125}{53924807908562931346383} a^{4} - \frac{3762997794941810242838}{17974935969520977115461} a^{2} + \frac{985165795760315357}{3939280291369927047}$, $\frac{1}{537252861193012485004013829} a^{15} + \frac{181446803585979884666}{537252861193012485004013829} a^{13} - \frac{1850817995245117248260}{59694762354779165000445981} a^{11} - \frac{13970433930227222348845}{537252861193012485004013829} a^{9} - \frac{460131162396865089965548}{13103728321780792317171069} a^{7} + \frac{43903362816147696186272}{1455969813531199146352341} a^{5} - \frac{72675454118736857360707}{161774423725688794039149} a^{3} + \frac{74522546576346290044}{460895794090281464499} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8}\times C_{8}\times C_{3218056}$, which has order $3295289344$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 99340914.09265693 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41 | Data not computed | ||||||