Normalized defining polynomial
\( x^{16} + 656 x^{14} + 168264 x^{12} + 21800192 x^{10} + 1543733476 x^{8} + 59754143904 x^{6} + 1163849279472 x^{4} + 8655861520224 x^{2} + 1353632190849 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4590539770923916035789355095649376383046516736=2^{64}\cdot 3^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $714.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3936=2^{5}\cdot 3\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3936}(1,·)$, $\chi_{3936}(1859,·)$, $\chi_{3936}(2053,·)$, $\chi_{3936}(647,·)$, $\chi_{3936}(73,·)$, $\chi_{3936}(3863,·)$, $\chi_{3936}(3289,·)$, $\chi_{3936}(1883,·)$, $\chi_{3936}(2077,·)$, $\chi_{3936}(3935,·)$, $\chi_{3936}(1643,·)$, $\chi_{3936}(301,·)$, $\chi_{3936}(2543,·)$, $\chi_{3936}(1393,·)$, $\chi_{3936}(3635,·)$, $\chi_{3936}(2293,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{4}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{1107} a^{8} - \frac{1}{27} a^{6} + \frac{2}{27} a^{4} - \frac{4}{9} a^{2}$, $\frac{1}{1107} a^{9} - \frac{1}{27} a^{7} + \frac{2}{27} a^{5} - \frac{4}{9} a^{3}$, $\frac{1}{96309} a^{10} + \frac{13}{32103} a^{8} + \frac{70}{783} a^{6} - \frac{293}{2349} a^{4} - \frac{152}{783} a^{2} - \frac{34}{87}$, $\frac{1}{288927} a^{11} + \frac{14}{32103} a^{9} + \frac{41}{2349} a^{7} - \frac{119}{7047} a^{5} + \frac{283}{2349} a^{3} - \frac{34}{261} a$, $\frac{1}{288927} a^{12} + \frac{43}{96309} a^{8} - \frac{740}{7047} a^{6} + \frac{61}{2349} a^{4} - \frac{9}{29} a^{2} + \frac{12}{29}$, $\frac{1}{303662277} a^{13} - \frac{323}{303662277} a^{11} - \frac{4214}{101220759} a^{9} - \frac{17501}{7406397} a^{7} - \frac{477116}{7406397} a^{5} + \frac{771511}{2468799} a^{3} - \frac{124978}{274311} a$, $\frac{1}{201643249075073153036841807} a^{14} - \frac{326646440289778748342}{201643249075073153036841807} a^{12} + \frac{52489833594963041684}{67214416358357717678947269} a^{10} + \frac{30226096830872907625583}{201643249075073153036841807} a^{8} + \frac{229285905608037907081174}{4918128026221296415532727} a^{6} + \frac{250824931202660414902373}{1639376008740432138510909} a^{4} - \frac{55089591989296665107585}{546458669580144046170303} a^{2} - \frac{24189792274992408937}{57771293961321920517}$, $\frac{1}{604929747225219459110525421} a^{15} + \frac{724225491045467921}{604929747225219459110525421} a^{13} + \frac{166040307932733713045}{201643249075073153036841807} a^{11} + \frac{150215082274953663369719}{604929747225219459110525421} a^{9} + \frac{808324264793059394473610}{14754384078663889246598181} a^{7} - \frac{53814767754188432568253}{1639376008740432138510909} a^{5} + \frac{333205219519842074874883}{1639376008740432138510909} a^{3} - \frac{30381842393766341108884}{182152889860048015390101} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8}\times C_{8}\times C_{7498888}$, which has order $7678861312$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69702662.454808 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41 | Data not computed | ||||||