Normalized defining polynomial
\( x^{16} - 4 x^{14} - 216 x^{13} + 1031 x^{12} + 2844 x^{11} + 32918 x^{10} - 112260 x^{9} + 238438 x^{8} - 27168 x^{7} + 17814694 x^{6} + 11516316 x^{5} + 128950970 x^{4} - 129903372 x^{3} + 1191614404 x^{2} + 114227100 x + 6079069441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45892197269607041217434019101147136=2^{32}\cdot 3^{12}\cdot 17^{6}\cdot 97^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $146.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{23} a^{14} + \frac{6}{23} a^{13} - \frac{7}{23} a^{12} - \frac{9}{23} a^{11} + \frac{8}{23} a^{10} - \frac{8}{23} a^{8} + \frac{1}{23} a^{7} - \frac{7}{23} a^{6} + \frac{6}{23} a^{5} + \frac{8}{23} a^{4} + \frac{7}{23} a^{3} + \frac{4}{23} a^{2} + \frac{11}{23} a$, $\frac{1}{410243153871206182236327468025155328157540751393992835371179597151} a^{15} + \frac{7926795646035046520145457088461828519261154656630208873761469590}{410243153871206182236327468025155328157540751393992835371179597151} a^{14} + \frac{6044170682756764678505705170249543378283393727608315834999045944}{17836658863965486184188150783702405572066989191043166755268678137} a^{13} + \frac{102446708132168255423793301058274793163100601383047555829299885635}{410243153871206182236327468025155328157540751393992835371179597151} a^{12} + \frac{77908344912156705874232180641168004732729755932917104018885972383}{410243153871206182236327468025155328157540751393992835371179597151} a^{11} - \frac{169126135445033286093842519302505640517113171052414479682277700202}{410243153871206182236327468025155328157540751393992835371179597151} a^{10} - \frac{103444167620662905576377701833884443924934182993165017651237027087}{410243153871206182236327468025155328157540751393992835371179597151} a^{9} - \frac{118572632415597569388357291072630268910539751432028686439518212165}{410243153871206182236327468025155328157540751393992835371179597151} a^{8} + \frac{183761136335427141231435478486996301149294930758020961039965595640}{410243153871206182236327468025155328157540751393992835371179597151} a^{7} + \frac{100269963811796108222591093975652129373817403866008294450029432374}{410243153871206182236327468025155328157540751393992835371179597151} a^{6} - \frac{134778467718792267157493967364840856470349211580636005348980171035}{410243153871206182236327468025155328157540751393992835371179597151} a^{5} - \frac{114473108406220440659838570528770436684307771070155357035621205635}{410243153871206182236327468025155328157540751393992835371179597151} a^{4} + \frac{163518630519784749721739120222225301803988936871987012404274518739}{410243153871206182236327468025155328157540751393992835371179597151} a^{3} + \frac{79232406030779307602895916090572693948811357420588228645501922908}{410243153871206182236327468025155328157540751393992835371179597151} a^{2} - \frac{197190709551639876635127959010534822485695737801215817845472124774}{410243153871206182236327468025155328157540751393992835371179597151} a - \frac{173306752338681882212060451282754852050945747147611183080945216}{379503380084372046472088314546859693022701897681769505431248471}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{40}$, which has order $320$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 153483762.357 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.0.949824.1, 4.0.422144.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.0.14434650095616.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |