Normalized defining polynomial
\( x^{16} - 8 x^{15} - 52 x^{14} + 144 x^{13} + 3933 x^{12} - 1672 x^{11} - 21320 x^{10} + 90376 x^{9} + 1383262 x^{8} - 1038000 x^{7} - 1572804 x^{6} + 4311208 x^{5} + 112548612 x^{4} - 16484472 x^{3} - 541516688 x^{2} + 991021888 x + 4376380753 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45892197269607041217434019101147136=2^{32}\cdot 3^{12}\cdot 17^{6}\cdot 97^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $146.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{15} + \frac{10111714939601051222028479033859201581250726182650090191197302214732226}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{14} + \frac{81704417645273133306038061883170891134761993965357744030293376490345564}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{13} + \frac{73225332383311214816646769490206901101034919593246171671623529078978266}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{12} - \frac{19060102687000728759949426746347438678545299423724825448372756728742648}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{11} + \frac{57995097005776438187458404383557584218951896381792279947093860474892518}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{10} + \frac{14873509680190564349252305685342213887226885212943878231613782361148963}{40408806842207077283990210569503487456609074158822021130261077505130633} a^{9} + \frac{65842212201899274280362435293764961224128519417413353014993517132628818}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{8} + \frac{79360183137304680040654508318839086513708697886857793140116666410684563}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{7} + \frac{72708162325189277320543748021455529404928322041038316874598767689306626}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{6} + \frac{95380896335765695718010931987581627791391115376531563426699814952052854}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{5} - \frac{41044339659012667670250242937836494002594296680640135512529754868643256}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{4} + \frac{36701039922129146579483776893197097215872756330682430146870399425113451}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{3} - \frac{8915317346393905829346066947104448571159060900012393418933487112461129}{202044034211035386419951052847517437283045370794110105651305387525653165} a^{2} + \frac{66431728129989798367062002036143606528101391191530000695766351772302376}{202044034211035386419951052847517437283045370794110105651305387525653165} a - \frac{95983268479983187672159277015706177392771067531894114326801636499514681}{202044034211035386419951052847517437283045370794110105651305387525653165}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{40}$, which has order $320$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 135824302.167 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), 4.0.422144.1, 4.0.949824.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.0.14434650095616.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||