Normalized defining polynomial
\( x^{16} - x^{15} + 52 x^{14} - 52 x^{13} + 1072 x^{12} - 1395 x^{11} + 11748 x^{10} - 13839 x^{9} + 86310 x^{8} - 83556 x^{7} + 540278 x^{6} - 463965 x^{5} + 1553597 x^{4} - 771733 x^{3} + 3292187 x^{2} - 1949034 x + 2213401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4585048252186499369597900390625=3^{8}\cdot 5^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(197,·)$, $\chi_{255}(16,·)$, $\chi_{255}(19,·)$, $\chi_{255}(218,·)$, $\chi_{255}(92,·)$, $\chi_{255}(94,·)$, $\chi_{255}(227,·)$, $\chi_{255}(229,·)$, $\chi_{255}(166,·)$, $\chi_{255}(233,·)$, $\chi_{255}(106,·)$, $\chi_{255}(173,·)$, $\chi_{255}(49,·)$, $\chi_{255}(158,·)$, $\chi_{255}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{289034445079918768974533783036378799974459625164723} a^{15} - \frac{7805059681154855318417728924119045946318528872880}{289034445079918768974533783036378799974459625164723} a^{14} + \frac{139421278639331645414297196489737606004470479679180}{289034445079918768974533783036378799974459625164723} a^{13} + \frac{37135064956533850334366520060328602647135011429108}{289034445079918768974533783036378799974459625164723} a^{12} - \frac{127317722405057512291145412440779026779535404574539}{289034445079918768974533783036378799974459625164723} a^{11} + \frac{15506641334413197413843062501780127517421217998640}{289034445079918768974533783036378799974459625164723} a^{10} + \frac{83252585739488419017947772572439068244862566449089}{289034445079918768974533783036378799974459625164723} a^{9} - \frac{96795861642757680756201663079753241428964024245772}{289034445079918768974533783036378799974459625164723} a^{8} - \frac{129484990356321113194159276588720023209883618025216}{289034445079918768974533783036378799974459625164723} a^{7} - \frac{133738533940126421812790530054608978851819731939013}{289034445079918768974533783036378799974459625164723} a^{6} + \frac{90871878891179884722960847541927411593620119148138}{289034445079918768974533783036378799974459625164723} a^{5} - \frac{80685588460940467254233631493707288531404436488694}{289034445079918768974533783036378799974459625164723} a^{4} - \frac{29179282860179436161656724368953597311278075696658}{289034445079918768974533783036378799974459625164723} a^{3} + \frac{96835165990098560863202421181736244314785044444869}{289034445079918768974533783036378799974459625164723} a^{2} - \frac{132729208814143006860330249003391962149330256830075}{289034445079918768974533783036378799974459625164723} a - \frac{135826115220380632656635164545256289922518634717000}{289034445079918768974533783036378799974459625164723}$
Class group and class number
$C_{2}\times C_{1412}$, which has order $2824$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81485.0410293661 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.256461670625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||