Normalized defining polynomial
\( x^{16} - x^{15} + 52 x^{14} - 52 x^{13} + 1072 x^{12} - 375 x^{11} + 10728 x^{10} + 4776 x^{9} + 67695 x^{8} + 76584 x^{7} + 217448 x^{6} + 420375 x^{5} + 129932 x^{4} - 901018 x^{3} + 2686052 x^{2} - 2023749 x + 459511 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4585048252186499369597900390625=3^{8}\cdot 5^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(49,·)$, $\chi_{255}(143,·)$, $\chi_{255}(16,·)$, $\chi_{255}(19,·)$, $\chi_{255}(23,·)$, $\chi_{255}(94,·)$, $\chi_{255}(229,·)$, $\chi_{255}(166,·)$, $\chi_{255}(167,·)$, $\chi_{255}(106,·)$, $\chi_{255}(107,·)$, $\chi_{255}(113,·)$, $\chi_{255}(182,·)$, $\chi_{255}(248,·)$, $\chi_{255}(122,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{13} a^{10} - \frac{3}{13} a^{9} + \frac{4}{13} a^{8} - \frac{6}{13} a^{7} - \frac{1}{13} a^{6} - \frac{3}{13} a^{5} + \frac{3}{13} a^{4} + \frac{2}{13} a^{3} + \frac{6}{13} a^{2} - \frac{3}{13} a$, $\frac{1}{13} a^{11} - \frac{5}{13} a^{9} + \frac{6}{13} a^{8} - \frac{6}{13} a^{7} - \frac{6}{13} a^{6} - \frac{6}{13} a^{5} - \frac{2}{13} a^{4} - \frac{1}{13} a^{3} + \frac{2}{13} a^{2} + \frac{4}{13} a$, $\frac{1}{13} a^{12} + \frac{4}{13} a^{9} + \frac{1}{13} a^{8} + \frac{3}{13} a^{7} + \frac{2}{13} a^{6} - \frac{4}{13} a^{5} + \frac{1}{13} a^{4} - \frac{1}{13} a^{3} - \frac{5}{13} a^{2} - \frac{2}{13} a$, $\frac{1}{13} a^{13} - \frac{1}{13} a$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{2}$, $\frac{1}{85214852473206147226880413976616708361224083} a^{15} + \frac{1174757393397548099591719089484279153301210}{85214852473206147226880413976616708361224083} a^{14} + \frac{2310752873149306579197053087795924268814914}{85214852473206147226880413976616708361224083} a^{13} - \frac{3133909258645420602763367747842229409291775}{85214852473206147226880413976616708361224083} a^{12} + \frac{2008501783178689507769060346176460401491864}{85214852473206147226880413976616708361224083} a^{11} + \frac{2551241921293177174447404639633755558681}{139467843655001877621735538423267935124753} a^{10} + \frac{11915369844168838100774580344895468052703828}{85214852473206147226880413976616708361224083} a^{9} + \frac{12874059568394986599713493071803735727123825}{85214852473206147226880413976616708361224083} a^{8} + \frac{24513591633466314611743190413540019688706708}{85214852473206147226880413976616708361224083} a^{7} - \frac{36609363077934221052955972267602646014076329}{85214852473206147226880413976616708361224083} a^{6} - \frac{1820254136266575383963133407919656525565929}{6554988651785088248221570305893592950863391} a^{5} + \frac{5220191686481242634146570042159495815479173}{85214852473206147226880413976616708361224083} a^{4} + \frac{34086240457797456623833763837781550330996328}{85214852473206147226880413976616708361224083} a^{3} - \frac{1460533343586668557885326550136025888044418}{6554988651785088248221570305893592950863391} a^{2} - \frac{25836493387116187758059806583783123016112649}{85214852473206147226880413976616708361224083} a + \frac{2733690665737037974366297871686082453316334}{6554988651785088248221570305893592950863391}$
Class group and class number
$C_{2}\times C_{7556}$, which has order $15112$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81485.0410293661 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.256461670625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | $16$ | $16$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||