Normalized defining polynomial
\( x^{16} + 85 x^{14} + 2720 x^{12} + 42075 x^{10} + 341275 x^{8} + 1510875 x^{6} + 3604000 x^{4} + 4218125 x^{2} + 1795625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45798768824157052688000000000000=2^{16}\cdot 5^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(3,·)$, $\chi_{340}(7,·)$, $\chi_{340}(9,·)$, $\chi_{340}(81,·)$, $\chi_{340}(147,·)$, $\chi_{340}(21,·)$, $\chi_{340}(27,·)$, $\chi_{340}(229,·)$, $\chi_{340}(227,·)$, $\chi_{340}(101,·)$, $\chi_{340}(303,·)$, $\chi_{340}(49,·)$, $\chi_{340}(243,·)$, $\chi_{340}(189,·)$, $\chi_{340}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{325} a^{11} - \frac{2}{325} a^{9} + \frac{6}{65} a^{7} + \frac{1}{65} a^{5} - \frac{3}{13} a^{3} + \frac{6}{13} a$, $\frac{1}{76375} a^{12} + \frac{127}{15275} a^{10} + \frac{279}{15275} a^{8} + \frac{99}{3055} a^{6} - \frac{29}{3055} a^{4} - \frac{82}{611} a^{2} + \frac{12}{47}$, $\frac{1}{76375} a^{13} - \frac{14}{15275} a^{11} - \frac{2}{611} a^{9} - \frac{136}{3055} a^{7} - \frac{34}{611} a^{5} - \frac{270}{611} a^{3} - \frac{79}{611} a$, $\frac{1}{7326424625} a^{14} - \frac{31412}{7326424625} a^{12} - \frac{1401453}{1465284925} a^{10} + \frac{1438323}{293056985} a^{8} + \frac{3764001}{293056985} a^{6} + \frac{16177069}{293056985} a^{4} + \frac{7697477}{58611397} a^{2} + \frac{165385}{346813}$, $\frac{1}{7326424625} a^{15} - \frac{31412}{7326424625} a^{13} - \frac{1401453}{1465284925} a^{11} + \frac{1438323}{293056985} a^{9} + \frac{3764001}{293056985} a^{7} + \frac{16177069}{293056985} a^{5} + \frac{7697477}{58611397} a^{3} + \frac{165385}{346813} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2372}$, which has order $9488$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81485.0410293661 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.256461670625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||