Properties

Label 16.0.45672932012...0384.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{34}\cdot 3^{12}\cdot 29^{8}$
Root discriminant $53.55$
Ramified primes $2, 3, 29$
Class number $48$ (GRH)
Class group $[4, 12]$ (GRH)
Galois group $Q_8:C_2^2.D_6$ (as 16T754)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![68121, 0, -95094, 0, 30240, 0, 22518, 0, 2070, 0, -90, 0, -48, 0, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^14 - 48*x^12 - 90*x^10 + 2070*x^8 + 22518*x^6 + 30240*x^4 - 95094*x^2 + 68121)
 
gp: K = bnfinit(x^16 - 6*x^14 - 48*x^12 - 90*x^10 + 2070*x^8 + 22518*x^6 + 30240*x^4 - 95094*x^2 + 68121, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{14} - 48 x^{12} - 90 x^{10} + 2070 x^{8} + 22518 x^{6} + 30240 x^{4} - 95094 x^{2} + 68121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4567293201244188864763920384=2^{34}\cdot 3^{12}\cdot 29^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $53.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6} a^{4} - \frac{1}{2}$, $\frac{1}{6} a^{5} - \frac{1}{2} a$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{36} a^{8} - \frac{1}{4}$, $\frac{1}{36} a^{9} - \frac{1}{4} a$, $\frac{1}{216} a^{10} - \frac{1}{72} a^{8} + \frac{1}{18} a^{6} + \frac{11}{24} a^{2} + \frac{1}{8}$, $\frac{1}{216} a^{11} - \frac{1}{72} a^{9} - \frac{1}{36} a^{7} - \frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{7}{24} a^{3} + \frac{1}{4} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{432} a^{12} + \frac{1}{144} a^{8} - \frac{1}{48} a^{4} - \frac{1}{16}$, $\frac{1}{432} a^{13} + \frac{1}{144} a^{9} - \frac{1}{48} a^{5} - \frac{1}{16} a$, $\frac{1}{32834460672} a^{14} - \frac{1}{864} a^{13} + \frac{1876633}{3648273408} a^{12} - \frac{9314531}{10944820224} a^{10} + \frac{1}{96} a^{9} - \frac{1198729}{405363712} a^{8} - \frac{22734901}{280636416} a^{6} + \frac{1}{96} a^{5} + \frac{12245719}{405363712} a^{4} - \frac{1907099}{31181824} a^{2} + \frac{13}{32} a - \frac{135445327}{405363712}$, $\frac{1}{952199359488} a^{15} - \frac{197051957}{317399786496} a^{13} - \frac{1}{864} a^{12} + \frac{548060573}{317399786496} a^{11} + \frac{1458654895}{105799928832} a^{9} + \frac{1}{96} a^{8} - \frac{75138919}{2712818688} a^{7} + \frac{2874283141}{35266642944} a^{5} + \frac{1}{96} a^{4} - \frac{376005457}{2712818688} a^{3} + \frac{4678248753}{11755547648} a + \frac{13}{32}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{12}$, which has order $48$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{443}{34131456} a^{14} - \frac{31}{1264128} a^{12} - \frac{1417}{1264128} a^{10} - \frac{6923}{3792384} a^{8} + \frac{77237}{3792384} a^{6} + \frac{519047}{1264128} a^{4} + \frac{1600337}{1264128} a^{2} - \frac{523349}{421376} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10910924.4297 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$Q_8:C_2^2.D_6$ (as 16T754):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 384
The 23 conjugacy class representatives for $Q_8:C_2^2.D_6$
Character table for $Q_8:C_2^2.D_6$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), 4.4.242208.1, 8.0.234658861056.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.8.22.90$x^{8} + 4 x^{7} + 14 x^{4} + 12 x^{2} + 2$$8$$1$$22$$D_4$$[2, 3, 7/2]$
$3$3.8.6.3$x^{8} - 3 x^{4} + 18$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
3.8.6.3$x^{8} - 3 x^{4} + 18$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.6.4.1$x^{6} + 232 x^{3} + 22707$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$