Normalized defining polynomial
\( x^{16} - 8 x^{15} + 40 x^{14} - 140 x^{13} + 616 x^{12} - 2240 x^{11} + 8426 x^{10} - 23980 x^{9} + 78891 x^{8} - 192320 x^{7} + 561050 x^{6} - 1090292 x^{5} + 2866466 x^{4} - 4102400 x^{3} + 9158010 x^{2} - 7262120 x + 14611195 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(456413827530756096000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2280=2^{3}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2280}(1,·)$, $\chi_{2280}(1027,·)$, $\chi_{2280}(1217,·)$, $\chi_{2280}(1673,·)$, $\chi_{2280}(1483,·)$, $\chi_{2280}(1937,·)$, $\chi_{2280}(2051,·)$, $\chi_{2280}(1369,·)$, $\chi_{2280}(2203,·)$, $\chi_{2280}(419,·)$, $\chi_{2280}(721,·)$, $\chi_{2280}(1331,·)$, $\chi_{2280}(113,·)$, $\chi_{2280}(1139,·)$, $\chi_{2280}(1747,·)$, $\chi_{2280}(2089,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{8} a^{2} - \frac{1}{8}$, $\frac{1}{248} a^{13} + \frac{9}{248} a^{12} + \frac{5}{248} a^{11} + \frac{13}{248} a^{10} + \frac{5}{62} a^{9} - \frac{1}{31} a^{8} + \frac{37}{248} a^{7} - \frac{39}{248} a^{6} + \frac{7}{62} a^{5} + \frac{5}{62} a^{4} - \frac{51}{248} a^{3} - \frac{71}{248} a^{2} - \frac{109}{248} a + \frac{119}{248}$, $\frac{1}{521010724946003912} a^{14} - \frac{7}{521010724946003912} a^{13} - \frac{2959570629918355}{65126340618250489} a^{12} + \frac{11806708999580153}{521010724946003912} a^{11} - \frac{28774056894441121}{521010724946003912} a^{10} + \frac{6966669218318603}{260505362473001956} a^{9} - \frac{14818069260669}{157929895406488} a^{8} - \frac{18692352133655099}{521010724946003912} a^{7} + \frac{69346564399251451}{521010724946003912} a^{6} + \frac{3729659905292219}{260505362473001956} a^{5} + \frac{39997220924398597}{521010724946003912} a^{4} - \frac{120581723476785951}{521010724946003912} a^{3} + \frac{126242842619230741}{260505362473001956} a^{2} - \frac{154419329773737279}{521010724946003912} a - \frac{125135583386059711}{521010724946003912}$, $\frac{1}{15458909219872882072952} a^{15} + \frac{3707}{3864727304968220518238} a^{14} - \frac{9191784644331229201}{15458909219872882072952} a^{13} - \frac{291507080453077729915}{15458909219872882072952} a^{12} - \frac{107042353170148083059}{1932363652484110259119} a^{11} - \frac{241764342352924228929}{15458909219872882072952} a^{10} + \frac{1850995652421768156955}{15458909219872882072952} a^{9} + \frac{84290823878860514283}{7729454609936441036476} a^{8} - \frac{718921113079819852679}{3864727304968220518238} a^{7} + \frac{3034797891004241599715}{15458909219872882072952} a^{6} - \frac{1071062561750855207877}{15458909219872882072952} a^{5} - \frac{1110027928871025208287}{7729454609936441036476} a^{4} - \frac{252020115141036890841}{15458909219872882072952} a^{3} - \frac{4055690090624029839593}{15458909219872882072952} a^{2} + \frac{591083351827137558466}{1932363652484110259119} a - \frac{6608403352482250444735}{15458909219872882072952}$
Class group and class number
$C_{2}\times C_{4}\times C_{16}\times C_{80}$, which has order $10240$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19771.344992359085 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |