Normalized defining polynomial
\( x^{16} - 2 x^{15} + 3 x^{14} - 6 x^{13} + 11 x^{12} - 19 x^{11} + 26 x^{10} - 30 x^{9} + 33 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(4559007230078125\)
\(\medspace = 5^{8}\cdot 11^{4}\cdot 59^{2}\cdot 229\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.52\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}11^{1/2}59^{1/2}229^{1/2}\approx 862.0353821044703$ | ||
Ramified primes: |
\(5\), \(11\), \(59\), \(229\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{229}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{199}a^{14}+\frac{34}{199}a^{13}+\frac{32}{199}a^{12}-\frac{82}{199}a^{11}+\frac{12}{199}a^{10}+\frac{97}{199}a^{9}-\frac{76}{199}a^{8}-\frac{77}{199}a^{7}-\frac{76}{199}a^{6}+\frac{97}{199}a^{5}+\frac{12}{199}a^{4}-\frac{82}{199}a^{3}+\frac{32}{199}a^{2}+\frac{34}{199}a+\frac{1}{199}$, $\frac{1}{199}a^{15}+\frac{70}{199}a^{13}+\frac{24}{199}a^{12}+\frac{14}{199}a^{11}+\frac{87}{199}a^{10}+\frac{9}{199}a^{9}-\frac{80}{199}a^{8}-\frac{45}{199}a^{7}+\frac{94}{199}a^{6}+\frac{97}{199}a^{5}-\frac{92}{199}a^{4}+\frac{34}{199}a^{3}-\frac{59}{199}a^{2}+\frac{39}{199}a-\frac{34}{199}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a$, $\frac{107}{199}a^{15}+\frac{10}{199}a^{14}+\frac{69}{199}a^{13}-\frac{296}{199}a^{12}+\frac{280}{199}a^{11}-\frac{521}{199}a^{10}+\frac{341}{199}a^{9}-\frac{365}{199}a^{8}+\frac{584}{199}a^{7}-\frac{55}{199}a^{6}+\frac{603}{199}a^{5}-\frac{172}{199}a^{4}+\frac{231}{199}a^{3}-\frac{222}{199}a^{2}+\frac{135}{199}a-\frac{46}{199}$, $\frac{195}{199}a^{15}-\frac{334}{199}a^{14}+\frac{503}{199}a^{13}-\frac{1033}{199}a^{12}+\frac{1860}{199}a^{11}-\frac{3162}{199}a^{10}+\frac{4182}{199}a^{9}-\frac{4743}{199}a^{8}+\frac{5003}{199}a^{7}-\frac{4245}{199}a^{6}+\frac{3631}{199}a^{5}-\frac{2446}{199}a^{4}+\frac{1382}{199}a^{3}-\frac{502}{199}a^{2}+\frac{229}{199}a-\frac{198}{199}$, $\frac{12}{199}a^{15}-\frac{103}{199}a^{14}+\frac{124}{199}a^{13}-\frac{222}{199}a^{12}+\frac{455}{199}a^{11}-\frac{789}{199}a^{10}+\frac{1261}{199}a^{9}-\frac{1490}{199}a^{8}+\frac{1620}{199}a^{7}-\frac{1591}{199}a^{6}+\frac{1322}{199}a^{5}-\frac{1146}{199}a^{4}+\frac{496}{199}a^{3}-\frac{223}{199}a^{2}-\frac{49}{199}a-\frac{113}{199}$, $\frac{82}{199}a^{15}-\frac{118}{199}a^{14}+\frac{136}{199}a^{13}-\frac{415}{199}a^{12}+\frac{675}{199}a^{11}-\frac{1048}{199}a^{10}+\frac{1431}{199}a^{9}-\frac{1572}{199}a^{8}+\frac{1814}{199}a^{7}-\frac{1433}{199}a^{6}+\frac{1284}{199}a^{5}-\frac{1199}{199}a^{4}+\frac{524}{199}a^{3}-\frac{455}{199}a^{2}+\frac{181}{199}a-\frac{120}{199}$, $\frac{4}{199}a^{15}-\frac{88}{199}a^{14}+\frac{74}{199}a^{13}-\frac{133}{199}a^{12}+\frac{307}{199}a^{11}-\frac{509}{199}a^{10}+\frac{853}{199}a^{9}-4a^{8}+\frac{825}{199}a^{7}-\frac{896}{199}a^{6}+\frac{409}{199}a^{5}-\frac{429}{199}a^{4}-\frac{210}{199}a^{3}+\frac{132}{199}a^{2}-\frac{50}{199}a+\frac{174}{199}$, $\frac{87}{199}a^{15}-\frac{123}{199}a^{14}+\frac{117}{199}a^{13}-\frac{256}{199}a^{12}+\frac{558}{199}a^{11}-\frac{872}{199}a^{10}+\frac{792}{199}a^{9}-3a^{8}+\frac{382}{199}a^{7}+\frac{14}{199}a^{6}-\frac{109}{199}a^{5}+\frac{470}{199}a^{4}-\frac{289}{199}a^{3}+\frac{284}{199}a^{2}+\frac{7}{199}a-\frac{96}{199}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 9.23010708309 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 9.23010708309 \cdot 1}{2\cdot\sqrt{4559007230078125}}\cr\approx \mathstrut & 0.166027699478 \end{aligned}\]
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
A solvable group of order 32768 |
The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.275.1, 8.2.4461875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | R | $16$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(11\)
| 11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
11.8.4.1 | $x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(59\)
| $\Q_{59}$ | $x + 57$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{59}$ | $x + 57$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{59}$ | $x + 57$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{59}$ | $x + 57$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
59.2.0.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
59.2.0.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
59.4.0.1 | $x^{4} + 2 x^{2} + 40 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
59.4.2.1 | $x^{4} + 116 x^{3} + 3486 x^{2} + 7076 x + 201725$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(229\)
| $\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |